Bài 2 : Bài giải
a, \(2008^n=1=2008^0\)
\(\Rightarrow\text{ }n=0\)
b, \(32^{-n}\cdot16^n=1024\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n=2^{10}\)
\(2^{-5n}\cdot2^{4n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow\text{ }n=-10\)
c, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n=\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^6\cdot2^6=2^{12}\)
\(\Rightarrow\text{ }n=12\)