chứng minh:a) a2 +b2 > 2ab - 3
b) x4 + 2x2 > -a2 - a2x2- 1
Rút gọn biểu thức
a. 2x+2y/a2+2ab+b2 . ax-ay+bx-by/2x2-2y2
b. a+b-c/a2+2ab+b2-c2 . a2+2ab+b2+ac+bc/a2-b2
c.x3+1/x2+2x+1 . x2-1/2x2-2x+2
d. x8-1/x+1 . 1/ (x2+1) (x4+1)
e. x-y/xy+y2 - 3x+y/x2-xy . y-x/x+y
a2 c2... là em viết số mũ đó ạ. anh chị giúp em giải mấy bài này nha
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{a+b}\)
\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{1}{a-b}\)
\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
Dùng diện tích để chứng tỏ : a - b 2 = a 2 - 2 a b + b 2 với điều kiện b < a
Dựng hình vuông ABCD có cạnh bằng a
Trên cạnh AB lấy điểm E sao cho BE = b
Từ E dựng đường thẳng song song BC cắt CD tại G
Ta có: CG = b, CE = ( a – b ), GD = ( a – b )
Trên cạnh AD lấy điểm K sao cho AK = b
Từ K kẻ đường thẳng song song với AB cắt BC tại H và cắt EG tại F
Ta có: KD = ( a – b ), BH = b
Hình vuông ABCD có diện tích bằng a 2
Hình vuông DKFG có diện tích bằng a - b 2
Hình chữ nhật AEFK có diện tích bằng ( a – b ) b
Hình vuông EBHF có diện tích bằng b 2
Hình chữ nhật HCGF có diện tích bằng ( a – b ).b
S A B C D = S D K F G + S A E F K = S E B H F + S H C G F
nên a - b 2 + a - b b + a - b b + b 2 = a 2
⇒ a - b 2 = a 2 - 2 a b + b 2
Dùng diện tích để chứng tỏ : a + b 2 = a 2 + 2 a b + b 2
Dựng hình vuông ABCD có cạnh bằng (a + b )
Trên cạnh AB dựng điểm E sao cho AE = a, EB = b, trên cạnh BC dựng điểm H sao cho BH = b, HC = a, trên cạnh CD dựng điểm G sao cho CG = b, GD = a, trên cạnh DA dựng điểm K sao cho DK = a, KA = b, GE cắt KH tại F.
Ta có : diện tích hình vuông ABCD bằng a + b 2
Diện tích hình vuông DKFG bằng a 2
Diện tích hình chữ nhật AKFE bằng a.b
Diện tích hình vuông EBHF bằng b 2
Diện tích hình chữ nhật HCGF bằng a.b
S A B C D = S D K F G + S A K E F + S E B H F + S H C G F
Vậy ta có : a + b 2 = a 2 + 2 a b + b 2
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
cho 2 số a,b thỏa: a2-2ab+1=2(ab-b2)
tinhsP= \(\dfrac{a^5+b^5+2ab}{4a^3-2ab}\)
Chứng minh : a2+b2+c2<2ab+2bc+2ca
Thêm điều kiện: a,b,c thỏa mãn là các cạnh của một tam giác
Ta có: \(a< b+c\)
nên \(a^2< ab+ac\)
Ta có: b<a+c
nên \(b^2< ab+bc\)
Ta có: c<a+b
nên \(c^2< ac+bc\)
Do đó: \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Biến đổi vế trái thành vế phải:
a) a + b 2 = a 2 + 2 a b + b 2
b) ( a − b ) ( a + b ) = a 2 − b 2
c) a ( b + c ) − b ( a − c ) = ( a + b ) c
a, a(b+c)−b(a−c)a(b+c)−b(a−c)
=ab+ac−(ab−bc)=ab+ac−(ab−bc)
=ab+ac−ab+bc=ab+ac−ab+bc
=ac+bc=ac+bc
=(a+b)c=(a+b)c
b,(a+b)(a−b)(a+b)(a−b)
=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)
=aa+ab−ab−bb
a/. a4 + b4 ≥ 2a2b2
b/. (a2 + b2)2 ≥ 2a3b + 2ab3
c/. a2 - b2 ≥ 2ab (a - b)
d/. (a + b)2 ≥ 4ab
Mọi người giupps em với ạ :((
a: \(a^4+b^4\ge2a^2b^2\)
\(\Leftrightarrow a^4-2a^2b^2+b^4>=0\)
hay \(\left(a^2-b^2\right)^2\ge0\)(luôn đúng)
d: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 - 2 a b ≥ 0
Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0