Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Do
Xem chi tiết
Mạc Hoàng Thu Uyên
Xem chi tiết
Măng Cụt
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 23:09

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:52

a) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; - 6} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Do G là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{ - 2 + 4 + 2}}{3} = \frac{4}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{3 + 5 + \left( { - 3} \right)}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy \(G\left( {\frac{4}{3};\frac{5}{3}} \right)\)

c) Ta có: \(\overrightarrow {AB}  = \left( {6;2} \right),\overrightarrow {AC}  = \left( {4; - 6} \right),\overrightarrow {BC}  = \left( { - 2; - 8} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {2^2}}  = \sqrt {40} \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{4^2} + {{\left( { - 6} \right)}^2}}  = \sqrt {52} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}}  = \sqrt {68} \end{array}\)

Ta có:

\(\begin{array}{l}\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{6.4 + 2.\left( { - 6} \right)}}{{\sqrt {{6^2} + {2^2}} .\sqrt {{4^2} + {{\left( { - 6} \right)}^2}} }} \approx 0,263 \Rightarrow \widehat {BAC} \approx {74^o}\\\cos \widehat {ABC} = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\left( { - 6} \right).\left( { - 2} \right) + \left( { - 2} \right).\left( { - 8} \right)}}{{\sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 8} \right)}^2}} }} \approx 0,47 \Rightarrow \widehat {ABC} \approx {62^o}\end{array}\)
Áp dụng tính chất tổng ba góc trong một tam giác ta có: \(\widehat {ACB} \approx {180^o} - {74^o} - {62^o} \approx {44^o}\)

Vu Xuan Minh
Xem chi tiết
Akai Haruma
6 tháng 2 lúc 14:53

Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$

$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$

$\Leftrightarrow (5-3a, -1-3b)=(0,0)$

$\Rightarrow 5-3a=0; -1-3b=0$

$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$

b.

Để $A,B,D$ thẳng hàng thì:

$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$

$\Leftrightarrow (1,-7)=k(-2, 3m-1)$

$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$

$\Rightarrow m=5$

chip
Xem chi tiết
Lê Song Phương
17 tháng 12 2023 lúc 21:33

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

Citii?
17 tháng 12 2023 lúc 20:15

Bài gì vậy ạ?

Bùi Đức Tiến
Xem chi tiết
Nguyễn Huy Tú
13 tháng 3 2023 lúc 20:05

Ta có B(a;2-a) ; C(b;8-b)

Để tam giác ABC vuông cân tại A

\(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{AB}=\overrightarrow{0}\\\overrightarrow{AC}=\overrightarrow{AB}\end{matrix}\right.\) bạn thay vào giải hpt bằng p2 thế nhé 

Hoàng Anh Quân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 18:48

Gọi \(H\left(x;y\right)\) là trực tâm tam giác

\(\Rightarrow\overrightarrow{AH}=\left(x+3;y\right)\) ; \(\overrightarrow{BH}=\left(x-3;y\right)\)\(\overrightarrow{BC}=\left(-1;6\right)\) ; \(\overrightarrow{AC}=\left(5;6\right)\)

Do H là trực tâm tam giác \(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\left(x+3\right)+6y=0\\5\left(x-3\right)+6y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x+6y=3\\5x+6y=15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{5}{6}\\\end{matrix}\right.\) \(\Rightarrow H\left(2;\dfrac{5}{6}\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:52

a) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right)\)

\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { - 7} \right).3 + 1.3}}{{\sqrt {{{\left( { - 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} =  - \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { - 7;1} \right),\overrightarrow {BA}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( { - 10; - 2} \right)\)

Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}}  = \sqrt {50} \end{array}\)

Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26}  + 8\sqrt 2 \)

c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.

Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ - 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ - 9}}{2};\frac{3}{2}} \right)\)