Cho (P) y = x^2 và (d): y = 2(m+1)x-m^2-9. Tìm m để (P) và (d) cắt nhau taih hai điểm phân biệt
cho hàm số y=\(x^2\) (P) và y=2(m-3)x+m-9 (d), m là tham số, m∈R
a)với giá trị nào của m thì (d) là hàm số bậc nhất đồng biến
b)tìm m để đồ thị(P) và (d) tiếp xúc nhau, tìm tọa độ tiếp điểm.
c)xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ âm.
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
trên mặt phẳng tọa độ Oxy cho Parapol (P) : y=x^2 và đường thẳng d : y=x^2 -m +3
a, tìm tọa độ giao điểm của d và P khi m=1
b, tìm m để d cắt P tại 2 điểm phân biệt
c, với gtri nào của m thì P và d cắt nhau tại hai điểm phân biệt M(x1;y1); N(x1;x2) thỏa mãn y1+y2=3
a: Sửa đề; (d): y=x-m+3
Khi m=1 thì (d): y=x-1+3=x+2
PTHĐGĐ là:
x^2=x+2
=>x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
Khi x=2 thì y=2^2=4
Khi x=-1 thì y=(-1)^2=1
b: PTHĐGĐ là:
x^2-x+m-3=0
Δ=(-1)^2-4(m-3)
=1-4m+12=-4m+13
Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0
=>m<13/4
c: y1+y2=3
=>x1^2+x2^2=3
=>(x1+x2)^2-2x1x2=3
=>1-2(m-3)=3
=>2(m-3)=-2
=>m-3=-1
=>m=2(nhận)
cho (P) y = x^2 và (d) y=4x=m. tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt trong đó tung độ một trong hai giao điểm bằng 1
Cho (P) y=x^2 và (d)0 y=x+m
a) vẽ đồ thị (p) và (d) khi m=2 trên cùng hệ trục tọa độ
b) tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ a,b sao cho a=-2b .Tìm tọa độ điểm cắt nhau .
cho parabol (P) có pt : y= -x^2 và đường thẳng (d) có pt : y= -mx+m-1 . tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ là x1,x2 thỏa mãn x1^2 + x2^2 =17 ?
PTHĐGĐ là:
\(-x^2=-mx+m-1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:,
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=17\)
\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
1) Giải hệ phương trình sau:
$\left\{\begin{array}{l}\dfrac{2}{x-y}+\sqrt{y+1}=4 \\ \dfrac{1}{x-y}-3 \sqrt{y+1}=-5\end{array}\right.$.
2) Cho Parabol $(P): y=x^{2}$ và đường thẳng $(d): y=2(m-1) x-m^{2}+2 m$ ($m$ là tham số)
a) Tìm tọa độ giao điểm của Parabol $(P)$ và đường thẳng $(d)$ khi $m=2$.
b) Tìm $m$ để đường thẳng $(d)$ và Parabol $(P)$ cắt nhau tại hai điểm phân biệt có hoành độ $x_{1} , x_{2}$ đối nhau.
1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)
Vậy ...
1) Giải hệ phương trình $\left\{\begin{array}{l}2 \sqrt{x}+\dfrac{3}{y-1}=5 \\ 4 \sqrt{x}-\dfrac{1}{y-1}=3\end{array}\right.$
2) Trong mặt phẳng tọa độ $Oxy$, cho parabol $(P): y=x^{2}$ và đường thẳng $(d): y=m x-1$, với $m$ là tham số ($m \neq 0$)
a) Khi $m=3$, tìm tọa độ giao điểm của đường thẳng $(d)$ và parabol $(P)$.
b) Tìm tất cả các giá trị khác 0 của tham số $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_{1} , x_{2}$ thỏa mãn $x_{2}(x_{1}^{2}+1)=3$.
1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)
Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)
Vậy ...
1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\) ĐKXĐ:x≥o,y≠1
⇔\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)
vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)
2,a, xét pthđgđ của (d) và (p) khi m=3:
x\(^2\)=3x-1⇔\(x^2-3x+1=0\)
Δ=(-3)\(^2\)-4.1.1=5>0
⇒pt có 2 nghiệm pb
\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)
thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))
thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
b,xét pthđgđ của (d) và (p) :
\(x^2=mx-1\)⇔\(x^2-mx+1=0\) (*)
Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4
⇒pt có hai nghiệm pb⇔Δ>0
⇔m\(^2\)-4>0⇔m>16
với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)
theo hệ thức Vi-ét ta có:
(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)
\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3
⇒\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)
thay (I) vào (**) ta được:
1.m=3⇔m=3 (TM m≠0)
vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3