Giải PT: \(48x\left(x+1\right)\left(x^3-4\right)=\left(x^4+8x+12\right)^2\)
1, Giải pt
\(x^4-8x^3+21x^2-24x+9=0\)
2, Giải pt
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
Giải giúp mk vs ạ. Cảm ơn m.n nhìu
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Giải pt: \(\left(3\sqrt{x}+\sqrt{x+8}\right)\left(4+3\sqrt{x^2+8x}\right)=16\left(x-1\right)\)
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8}\)
đặt \(A=\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8\)
\(=\sqrt{x+8}\left(x^4+8x^3\right)+6x^2\left(x+8\right)+12x\sqrt{x+8}+8\)
\(=\sqrt{\left(x+8\right)^3}x^3+3\sqrt{\left(x+8\right)^2}x^22+3\sqrt{\left(x+8\right)}x4+8\)
\(=\left(x\sqrt{x+8}+2\right)^3\)
\(\Rightarrow P\left(x\right)=x\sqrt{x+8}+2\)
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}.\left[x^3\left(x+8\right)+12x\right]+6x^2\left(x+8\right)+8}\)
Đặt: \(\sqrt{x+8}=a>0\) => \(x+8=a^2\)
Khi đó ta có:
\(P\left(x\right)=\sqrt[3]{a\left(x^3a^2+12x\right)+6x^2a^2+8}\)
\(=\sqrt[3]{x^3a^3+12xa+6x^2a^2+2}\)
\(=\sqrt[3]{\left(ax+2\right)^3}\)
\(=ax+2\)
\(=x\sqrt{x+8}+2\)
giải pt a. \(9x+7=6\sqrt{8x+1}+4\sqrt{x+3}\)
b. \(\sqrt{\left(3x-3\right)\left(x+3\right)+16}+\sqrt{5\left(x-2\right)\left(x+4\right)+54}=-x^2+2x+4\)
Giải hệ PT:
\(\hept{\begin{cases}x^3+x=y^3+3y^2+4y+2\\\left(x^2-4\left(y+1\right)+11\right)\left(x^4-8x^2+21\right)=35\end{cases}}\)
giải pt: \(\left(x+3\right)\left(x+12\right)\left(x-4\right)\left(x-16\right)+20x^2=0\)
Lời giải:
Ta có:
\((x+3)(x+12)(x-4)(x-16)+20x^2=0\)
\(\Leftrightarrow [(x+3)(x-16)][(x+12)(x-4)]+20x^2=0\)
\(\Leftrightarrow (x^2-13x-48)(x^2+8x-48)+20x^2=0\)
Đặt \(x^2-12x-48=a\). PT trở thành:
\((a-x)(a+20x)+20x^2=0\)
\(\Leftrightarrow a^2+19ax-20x^2+20x^2=0\Leftrightarrow a^2+19ax=0\)
\(\Leftrightarrow a(a+19x)=0\)
\(\Leftrightarrow (x^2-12x-48)(x^2+7x-48)=0\)
\(\Leftrightarrow \left[\begin{matrix} x^2-12x-48=0\\ x^2+7x-48=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=6\pm 2\sqrt{21}\\ x=\frac{-7\pm \sqrt{241}}{2}\end{matrix}\right.\)
Vậy......
giải pt: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
Giải:
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
ĐKXĐ: \(x\ne\left\{1;2;3;4\right\}\)
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
\(\Rightarrow\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x-4\right)=\left(x-1\right)\left(x-2\right)+\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)+\left(x-1\right)\right]=\left(x-2\right)\left[\left(x-1\right)+\left(x-3\right)\right]\)
\(\Leftrightarrow x-4=x-2\)
\(\Leftrightarrow0x=2\)
Vậy ...
Phân tích đa thức thành nhân tử
\(a,\left(48x^2+8x-1\right)\left(3x^2+5x+2\right)-4\)
\(b,\left(7-x\right)^4+\left(5-x\right)^4-2\)
\(c,x^4+x^3-2x^2-6x-4\)
\(d,4\left(x^4+11x+30\right)\left(x^2+22x+120\right)-3x^2\)