cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình x2 -2(m-1)x - 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1 x2 sao cho x12 + x1 - x2 = 5 - 2m
Theo viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Ta có: \(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)
\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)
\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)
\(\Rightarrow x_1x_2=12=-2m\)
\(\Rightarrow m=-6\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)
\(\Rightarrow x_1.x_2=0=-2m\)
\(\Rightarrow m=0\)
Vậy \(m=0;m=-6\)
-Chúc bạn học tốt-
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`
1. cho phương trình x^2-2(m-3)x-2m-10=0 tìm giá trị nhỏ nhất của biểu thức A = x1^2 +x2^2-x1x2
2. cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
3. cho phương trình x^2 - (2m-1)x -2m -11 =0 . tìm m để phương trình có 2 nghiệm phân biệt x1 ;x2 thoả mãn |x1 -x2| bé hơn hoặc bằng 4
4.hai ca nô cùng rời bến A đến bến B .ca nô thứ nhất mỗi giờ chạy nhanh hơn ca nô thứ hai 5km nên đến B sớm hơn ca nô thứ hai 30 phút .tính vận tốc mỗi ca nô biết quãng đường AB dài 75 km
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
Bài 2: Cho phương trình x2- 2(m+2)x – 2m - 5 = 0 (1) a) Giải phương trình (1) khi m=2 b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, X2 thoả mãn: |x1-x2| = 2
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
cho pt: \(x^3-x^2+2mx-2m=0\left(1\right)\)
a, Tìm m để phương trình có ba nghiệm phân biệt x1,x2,x3 tm: x1+x2+x3=10
b,Tìm m để phương trình có ba nghiệm phân biệt đều lớn hơn hoặc bằng 1.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Cho phương trình x^2-(2m-1)x+4m-4=0. Tìm m để cho phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1+x2^2=5