Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Cô Hoàng Huyền
2 tháng 1 2018 lúc 9:00

Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d 

Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮3\)

Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\)            (1)

Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\)             (2)

Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)

Vậy thì  ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.

An Bùi
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 9:34

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Rhider
28 tháng 1 2022 lúc 9:36

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

Sad:(
Xem chi tiết
Nguyễn Ngọc Gia Huy
12 tháng 4 2023 lúc 19:28

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

no name
Xem chi tiết
Lê Hữu Minh Chiến
22 tháng 11 2016 lúc 21:28

Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:

       n^3 + 2n chia hết cho d =>  n(n^3 + 2n) chia hết cho d =>   n^4 + 2n^2 chia hết cho d (1)

       n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d  => (n^2 + 1)^2  =  n^4 + 2n^2 + 1 chia hết cho d  (2)

 Từ (1) và (2) suy ra :     

                                               (n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d  =>  1 chia hết cho d => d=+-1

   Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1

Băng Dii~
22 tháng 11 2016 lúc 19:24

Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau . 

Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa . 

Vậy không thể rút gọn và phân số này đã tối giản

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2018 lúc 17:35

Hướng dẫn giải:

Gọi d là ƯCLN của 2n + 5 và 3n + 7

⇒ (2n + 5)⋮ d và (3n + 7)⋮ d

⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

Trần Nhật Minh Anh
Xem chi tiết
AKARI GAMING™
Xem chi tiết
AKARI GAMING™
23 tháng 4 2019 lúc 20:00

gọi d=ƯCLN(3n+2;2n+1)

lập luận d = 1

kết luận\(\frac{3n+1}{2n+1}\)tối giản

Lê Tài Bảo Châu
23 tháng 4 2019 lúc 20:01

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n

Huỳnh Quang Sang
23 tháng 4 2019 lúc 20:02

Gọi d là ƯCLN\((3n+2,2n+1)\)  \((d\inℕ^∗)\)

Ta có : \((3n+2)⋮d,(2n+1)⋮d\)

\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)

\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)

\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)

Mà \(d\inℕ^∗\)nên d = 1

Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 4 2017 lúc 14:51

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2019 lúc 8:52

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N