Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HƯng Nguyễn VĂn
Xem chi tiết
Phạm Thị Thùy Linh
21 tháng 3 2019 lúc 19:41

A B C M D

Phạm Thị Thùy Linh
21 tháng 3 2019 lúc 19:58

Ta có  BD = \(\frac{1}{2}BM=\frac{1}{4}BC=\frac{1}{4}.8=2\)

Xét tam giác ABC và tam giác DBA có

 \(\widehat{B}\)chung

\(\frac{AB}{DB}=\frac{4}{2}=2\)(1)

\(\frac{BC}{BA}=\frac{8}{4}=2\)(2)

từ (1) và (2) \(\Rightarrow\frac{AB}{DB}=\frac{BC}{BA}\)

\(\Rightarrow\)tam giác ABC đồng dạng với tam giác DBA (c.g.c)

\(\Rightarrow\)\(\frac{AB}{DB}=\frac{AC}{DA}\)\(\Rightarrow\)\(DA=\frac{DB.AC}{AB}=\frac{2.6}{4}=\frac{12}{4}=3\)

vậy AD = 3 (cm)

chúc bn học tốt

Nguyễn Xuân	Dương
14 tháng 4 2020 lúc 15:01

159cm

Khách vãng lai đã xóa
La Vĩnh Thành Đạt
Xem chi tiết
Ngo Minh Truong
Xem chi tiết
do thi nhu quynh
Xem chi tiết
Trần Nguyễn Quốc Dũng
Xem chi tiết
Lucy Cute
Xem chi tiết
Thanh Hoàng Thanh
29 tháng 4 2021 lúc 22:46

a) Xét tam giác ABC có:

BC2 = 102 = 100 (cm)

AB2 + AC2 = 6+ 82 = 36 + 64 = 100 (cm)

=> BC2 = AB2 + AC2 (= 100)

=> Tam giác ABC vuông tại A (định lý Pytago đảo)

b) MB = MD (gt) => M là trung điểm BD 

Xét Tứ giác ABCD có:

M là trung điểm của BD (cmt)

M là trung điểm của AC (gt)

=> ABCD là hình bình hành (dhnb)

=> AB // CD (Tính chất hình bình hành)

 

Đỗ Thị Hải Yến
Xem chi tiết
Con Chim 7 Màu
17 tháng 8 2019 lúc 20:13

Hinh ban tu ve nhe 

Ta ke duong trung tuyen DE ,goi giao diem cua DE va AB la Q

Ta co:\(AB=\sqrt{BC^2-AC^2}=\sqrt{100-64}=\sqrt{36}=6\left(cm\right)\)

Suy ra:\(MA=2\left(cm\right)\left(1\right)\)

Hay Q la trong tam cua \(\Delta BCD\)

Co \(\frac{BQ}{AB}=\frac{2}{3}\Rightarrow BQ=4\left(cm\right)\)

                           \(\Rightarrow AQ=2\left(cm\right)\left(2\right)\)

Tu (1) va (2) suy ra:\(AQ=AM\)

Vi \(M,Q\in AB\)va \(AQ=AM\) suy ra:\(M\equiv Q\)

Nen M la diem dong quy trong \(\Delta BCD\)

Hay 3 diem M,N,C thang hang.

:)

~Alpaca~
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 20:23

Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông

a) Sửa đề: Chứng minh ΔABD=ΔACD

Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC đều)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: BD=CD(hai cạnh tương ứng)

b) Ta có: AB=BC(ΔABC đều)

mà BC=6cm(gt)

nên AB=6cm

Ta có: BD=CD(cmt)

mà BD+CD=BC(D nằm giữa B và C)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)

hay \(AD=3\sqrt{3}cm\)

Vậy: \(AD=3\sqrt{3}cm\)

c) Ta có: ΔABC đều(gt)

nên \(\widehat{C}=60^0\)

Ta có: BD=DC(cmt)

mà D nằm giữa B và C(gt)

nên D là trung điểm của BC

hay \(CD=\dfrac{BC}{2}\)(1)

Ta có: E là trung điểm của AC(gt)

nên \(CE=\dfrac{AC}{2}\)(2)

Ta có: ΔABC đều(gt)

nên BC=AC(3)

Từ (1), (2) và (3) suy ra CE=CD

Xét ΔCED có CE=CD(cmt)

nên ΔCED cân tại C(Định nghĩa tam giác cân)

Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)

nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)

d) Xét ΔCAB có 

D là trung điểm của BC(cmt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

hay DE//BA(Định lí 2 về đường trung bình của tam giác)

Phuoc 7b_Phan Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2022 lúc 23:43

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC