Với a,b,c>-1 và a^3+b^3+c^3>a^2+b^2+c^2. Hãy cmr a^5+b^5+c^5>a^2+b^2+c^2
a) Tìm a - b + c biết 2a - 1, b + 3, 5 - 2c TLT với 2 , 3 , 4 và a + b - c = 2
b) Tìm a - b + c biết 2a - 1, b + 3, 5 - 2c TLN với 2 , 3 , 4 và a + b - c = 2
a) Tìm a - b + c biết 2a - 1, b + 3, 5 - 2c TLT với 2 , 3 , 4 và a + b - c = 2
b) Tìm a - b + c biết 2a - 1, b + 3, 5 - 2c TLN với 2 , 3 , 4 và a + b - c = 2
a) 2a - 1, b + 3, 5 - 2c TLT với 2 , 3 , 4
=>\(\frac{2a-1}{2}=\frac{b+3}{3}=\frac{5-2c}{4}=k\left(kthuocZ\right)\)
=>a=2k+1,b=3k-3,c=(5-4k)/2
Thay vao a+b-c=2 tim duoc k, chu y k thuoc Z, tu do suy ra a,b,c.
b) Tuong tu.
a) Biết 2a , b - 1 , c - 2 TL với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
b) Biết 2a , b - 1 , c - 2 TLN với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
a: Theo đề, ta có:
\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)
Do đó: a=-1; b-1=-8/3; c-2=-10/3
=>a=-1; b=-5/3; c=-4/3
b: Theo đề, ta có:
\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)
Do đó: a=-5/4; b-1=-15/8; c-2=-3/2
=>a=-5/4; b=-7/8; c=1/2
Tìm ba só a; b; c biét a+b+c= 100; a và b tỉ lẹ nghịch với 3 và 2; b và c tỉ lẹ thuạn với 4 và 5.
HELP ME
Vì a và b TLN với 3 và 2
=>a.3=b.2
=>\(\dfrac{a}{2}=\dfrac{b}{3}\)=>\(\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Vì b và c TLT với 4 và 5
=>\(\dfrac{b}{4}=\dfrac{c}{5}\)=>\(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1),(2)=>\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{100}{35}=\dfrac{20}{7}\)=>a=\(\dfrac{160}{7}\)
b=\(\dfrac{240}{7}\)
c=\(\dfrac{300}{7}\)
a) Tìm a , b ,c biết a - 1 ; b - 2 ; c - 3 TL với 2 , 3 ,4 và 2a + 3b - c = 50
b) Tìm a , b ,c biết a - 1 ; b - 2 ; c - 3 TLN với 2 , 3 ,4 và 2a + 3b - c = 50
a) \(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\Leftrightarrow\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}=\frac{2a+3b-c-2-6+3}{4+9-4}=\frac{45}{9}=5\)
Suy ra : \(\begin{cases}a=11\\b=17\\c=23\end{cases}\)
Cmr nếu a+b+c=0 thì:
a) \(10\left(a^7+b^7+c^7\right)=7\left(a^2+b^2+c^2\right)\left(a^5+b^5+c^5\right)\)
b) \(a^5\left(b^2+c^2\right)+b^5\left(c^2+a^2\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
cần giúp
1.Cho a,b,c>0. CMR:\(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge a^3+b^3+c^3\)
2.Cho a,b,c>0. CMR: \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{1}{3}\left(a^2+b^2+c^2\right)\)
3.Cho a,b,c thỏa mãn a+b+c=3. CMR: \(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
1. Chứng minh biểu thức không phụ thuộc x :
( \(\frac{3x}{x^2-4}\) - \(\frac{1}{x-2}\) - \(\frac{2}{x+2}\)) : ( 1 + \(\frac{x^2+4}{4-x^2}\) )
2.
a) Biết 2a , b - 1 , c - 2 TL với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
b) Biết 2a , b - 1 , c - 2 TLN với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c