Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HAHAHAHA
Xem chi tiết
tthnew
24 tháng 1 2021 lúc 19:26

Đề viết sai bạn nhé. Phương trình là \(mx^2-2\left(3-m\right)x+m-4=0\) mới đúng.

ĐK: \(m\ne0\)

Để phương trình có nghiệm thì \(\Delta'=b'^2-ac=9-2m\ge0\Leftrightarrow m\le\dfrac{9}{2}\)

a) Phương trình có hai nghiệm đối nhau nên \(x_1+x_2=0\Leftrightarrow-\dfrac{-2\left(3-m\right)}{m}=0\Leftrightarrow m=3\) (thỏa mãn)

Vậy $m=3$ là giá trị cần tìm.

b) Phương trình có đúng một nghiệm âm nên nghiệm còn lại là không âm. 

Vậy hai nghiệm trên trái dấu nhau.

Để phương trình có nghiệm trái dấu thì \(P=x_1x_2< 0\Leftrightarrow\dfrac{m-4}{m}< 0\Leftrightarrow0\le m\le4\)

Luffy mũ rơm
Xem chi tiết
Ctuu
Xem chi tiết
thanh thuy
Xem chi tiết
thanh thuy
Xem chi tiết
Chibi
20 tháng 3 2017 lúc 10:01

a

x1 + x2 = 2(m-1)

x1x2 = m-3

=> \(\frac{x_1+x_2}{2}\) + 1 = x1x+ 3

=> x1 + x2 + 2 = 2x1x2 + 6

=> x1 + x2 - 2x1x- 4 = 0

b

2 nghiệm bằng nhau về giá trị tuyệt đối và trái dấu

<=>

x1x2 < 0

x1 + x2 = 0

<=> 

2(m-1) = 0

m - 3 < 0

<=>

m = 1

Nguyễn Hương Thảo
Xem chi tiết
Nguyễn Thị Phương
4 tháng 3 2020 lúc 14:41

Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!

Khách vãng lai đã xóa
Kiệt Nguyễn
4 tháng 3 2020 lúc 14:53

\(x^2-\left(m+3\right)x+3m=0\)

\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)

\(=m^2-9m+9=\left(m-3\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)

\(\Rightarrow m\ne3\)

Khách vãng lai đã xóa
Phan Bá Quân
Xem chi tiết
Phạm Thị Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2023 lúc 16:08

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2

Ctuu
Xem chi tiết
Hồ Nhật Phi
18 tháng 3 2022 lúc 20:39

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.