giai pt (X+1)(x-2)(x-5)(x+6)=336
Giai pt sau:x-1/2013+x-2/2012+x-3/2011=x-4/2010+x-5/2009+x-6/2008
=> 3x-(1/2013+2/2012+3/2011)=3x-(4/2010+5/2009+6/2008)=>6x=-4/2010-5/2009-6/2008+1/2013+2/2012+3/2011 =>x=... làm tiếp đi bạn
Giai pt
x-5/x-5 + x-6/x-5 +...+1/x-5=4
giai Pt (x+1)^6 + (x-1)^6 =2
3x+5=6-(x+1) giai pt nha
\(\Leftrightarrow3x+5=6-\left(x+1\right)\)
\(\Leftrightarrow3x+5=6-x-1\)
\(\Leftrightarrow3x+x=6-5-1\)
\(\Leftrightarrow4x=0\)
\(\Leftrightarrow x=0:4\)
\(\Leftrightarrow x=0\)
Vậy: S = {0}
\(3x+5=6-x-1 =>3x+5=5-x =>3x+5-5+x=0 =>4x=0 =>x=0\)Chúc em học tốt
\(\Leftrightarrow3x+5-\left(6-x-1\right)=0\)
\(\Leftrightarrow3x+5-6+x+1=0\)
\(\Leftrightarrow4x=0\)
\(\Rightarrow x\in R\)
giai pt (x+1)(x+2)(x+5)(x+10)=10x^2
Giai pt sau :X+\(\sqrt{5+\sqrt{x-1}}\)=6
Giai pt
a) \(x^2-5|x|-6=0\)
b)\(\dfrac{x}{x-2}+\dfrac{5}{|x+2|}=1\)
c)\(|x-2010|^{2011}+|x-2011|^{2010}=1\)
a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)
\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)
\(\Leftrightarrow\left|x\right|-6=0\)
=>x=6 hoặc x=-6
b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)
Trường hợp 1: x>-2 và x<>2
Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)
=>7x=6
hay x=6/7(nhận)
TRường hợp 2: x<-2
Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)
=>-3x=-14
hay x=14/3(loại)
Giai pt sau:
1/x^2-3x+2 +1/x^2-5x+6 +1/x^2-7x+12 =2(Tất cả =2 nhé!)
=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)
=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)
=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)
=>2x^2-10x+8=3
=>2x^2-10x+5=0
=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)
Giai pt:\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)
Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)
Khi đó phương trình ban đầu trở thành :
\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)
+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)
\(\Leftrightarrow x=-2\)
+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)
\(\Leftrightarrow x=2\)
Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.