Cho △ABC cân tại A ( góc A<90°). Kẻ AH ⊥ BC tại H. a) △AHB =△AHC. Từ đó => BAH = CAH. b) trên tia AH lấy điểm K sao cho H là trung điểm AK
Câu 1) cho tam giác ABC cân tại A (AB=AC) . Gọi D, E lần lượt là trung điểm của AB và AC
a) CM tam giác ABE=tam giác ACD
b)CM BE=CD
c) Gọi K là trung điểm của BE và CD. Chứng minh tam giác KBC cân tại K
d) CM AK là tia phân giác của góc BAC
Câu 2) cho tam giác ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự hai điểm Q và R sao cho BQ=CR
a) CM. AQ=AR
b) gọi H là trung điểm của BC. CM góc QAH=góc RAH
Câu3)cho tam giác ABC có AB=AC=5cm ; BC= 8cm. Kẻ AH vuông góc BC ( H thuộc BC)
a) CM HB=HC và góc BAH=góc CAH
b) tính độ dài AH
c) kẻ AH vuông góc AB (D thuộcAB) HE vuông góc AC( E thuộc AC) CMR tam giác HDE cân
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
Cho △ABC cân tại A , ( góc A < 90 độ ) . Gọi H tại trung điểm BC , Chứng minh :
a, △ABH = △ACH
b, AH là đường trung trực của BC
c, Trên tia đối của HA lấy điểm I sao cho HA = HI . Chứng minh : IC // AB và ∠CAH = ∠CIH
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$AH$ chung
$BH=CH$ (do $H$ là trung điểm $BC$)
$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)
b. Từ tam giác bằng nhau phần a suy ra $\widehat{AHB}=\widehat{AHC}$
Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$
$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow AH\perp BC$
Vậy $AH\perp BC$ tại trung điểm $H$ của $BC$ nên $AH$ là trung trực $BC$
c. Xét tam giác $ABH$ và $ICH$ có:
$\widehat{AHB}=\widehat{IHC}$ (đối đỉnh)
$AH=IH$
$BH=CH$
$\Rightarrow \triangle ABH=\triangle ICH$ (c.g.c)
$\Rightarrow \widehat{ABH}=\widehat{ICH}$
Mà 2 góc này ở vị trí so le trong nên $IC\parallel AB$
Từ tam giác bằng nhau ở trên suy ra $\widehat{CIH}=\widehat{BAH}(1)$
Từ tam giác bằng nhau phần a suy ra $\widehat{BAH}=\widehat{CAH}(2)$
Từ $(1); (2)\Rightarrow \widehat{CIH}=\widehat{CAH}$
B1 cho tam giác ABC có góc A = 90 độ , AH vuông góc với BC tại H. Vẽ các điểm I, K sao cho AB là trung trực HI và AC là trung trực HK
a) CMinh : AI=AK
b) CM: 3 điểm I, A,K thẳng hàng
c) Cho góc CAH = 30 độ . Tính góc ABC
B2 cho tam giác ABC có góc A = 90 độ, Ah vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D ko cùng nửa mặt phảng ờ BC với điểm A sao cho AH=BD
a) CMinh: tam giác AHB= tam giác DHB
b) AB và DH có song song ko ?
c) tính góc ACB biết góc BAH= 35 độ
1. Cho ∆ABC có AB < AC. Vẽ AH vuông góc BC (H∈BC); HI vuông góc AC tại I. Trên tia đối của tia IH lấy điểm E sao cho IE = HI. Chứng minh:
a/ AE vuông góc CE. b/ góc BAH < góc CAH.
2. Cho ∆ABC vuông tại A. Trên cạnh AC lấy các điểm D và E sao cho AD = DE = EC. So sánh góc ABD và góc DBE.
--> Giúp e làm hai bài trên đi aaa :33 <3
Cho tam giác ABC cân tại A ( góc A< 90 độ ) Gọi H là trung điểm BC a) Cm tam giác ABH = tam giác ACH b) Cm aH là đường trung trực của BC c) Trên tia đối của tia HA lấy điểm I sao cho HA = HI. Cm IC// AB và góc CAH= góc CIH vẽ hình giúp e với ạ
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là đường cao
nên AH là trung trực của BC
c: Xét tứ giác ABIC có
H là trung điểm chung của AI và BC
AI vuông góc bC
=>ABIC là hình thoi
=>IC//AB và IC=AB
=>CA=CI
=>góc CAH=góc CIH
Cho tam giác ABC (AB < AC), vẽ đường cao AH
a. Chứng minh góc BAH < góc CAH và BH < CH
b. Trên tia đối của HA lấy điển E sao cho HE = HA.
Chứng minh ABE cân.
c. Gọi M là trung điểm của BC trên tia đối của MA lấy
điểm D sao cho MD = MA. Chứng minh AED vuong
Cho tam giác ABC vuong tại A, vẽ AH vuông góc với BC cắt BC tại H.
a) Chứng minh: Góc BAH bằng góc C.
b) Chứng minh: Góc CAH bằng góc B.
c) Trên tia AH lấy I sao cho H là trung điểm AI, qua I vẽ tia song song với AB cắt BC D. Chứng minh: DI = AB
d) Chứng minh: AD = DI
Cho tam giác ABC vuông tại A. Kẻ AH vuông BC tại H. Kẻ tia phân giác AD của góc BAH (D∈BC)
a) Chứng minh: ^BAH=^C, ^CAH=^B
b) Chứng minh: ΔACDcân
c) Kẻ DK vuông BC, cắt AB tại K. Chứng minh ΔKAD cân
d) CK là tia phân giác của ^C và CK là đường trung trực AB
e) Trên cạnh AB lấy điểm I sao cho AI = AH. Chứng minh DI // AC
Cho 🔺 ABC vuông tại A (AB<AC). Trên tia đối của tia AB, lấy điểm E sao cho AE=AC. Trên tia đối của tia AC, lấy điểm D sao cho AD=AB
a) Chứng minh 🔺ABC=🔺ADE
b) Vẽ AH vuônh góc với BC tại H. Chứng minh góc BAH = góc ACH
c) Tia HA cắt DC tại K. Chứng minh K là trung điểm của DE
d) Chứng minh BC // CE