Trên mặt phẳng Oxy, hình chữ nhật ABCD có đỉnh A(3;- 1) và là hai trong bốn đường thẳng chứa bốn cạnh của hình chữ nhật đó. Diện tích của ABCD bằng
trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đỉnh A(-1,2) và tâm I(1/2:0) xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD, biết đường thẳng BC đi qua điểm m(4;-3)
I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)
\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:
\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)
Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
B là giao điểm AB và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)
I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có AB = 3BC, M(3/2; -3/2) là trung điểm của AD, N là điểm trên cạnh AB thỏa BN = 2AN. Tìm tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường AN: x - 3y - 2 = 0 và điểm C có hoành độ dương.
AN chính là đường thẳng AB nên AB: x-2y-2=0.
AD qua M(3/2;-3/2) và vuông góc với AB nên AD: 2x+y-3/2=0. Suy ra A(1;-1/2)
Vì M là trung điểm AD nên D(2;-5/2) suy ra BC=AD=\(\sqrt{5}\), suy ra AB=3BC=3\(\sqrt{5}\)
B(2b+2;b) nên
\(AB=\sqrt{(2b+1)^2+(b+1/2)^2}=\dfrac{\sqrt{5}}{2}|2b+1|=3\sqrt{5}\Rightarrow b=\dfrac{5}{2}\) hoặc \(b=-\dfrac{7}{2}\)
Nếu \(b=\dfrac{5}{2}\) thì B(7;5/2). Do \(\overrightarrow{BC}=\overrightarrow{AD}=(1;-2)\) nên C(8;-1/2) (thỏa mãn)
Nếu \(b=-\dfrac{7}{2}\) thì B(-5;-7/2). Do \(\overrightarrow{BC}=\overrightarrow{AD}=(1;-2)\) nên C(-4;-11/2) (loại)
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có AB = 3BC, M(3/2; -3/2) là trung điểm của AD, N là điểm trên cạnh AB thỏa BN = 2AN. Tìm tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường CN: x - 3y - 2 = 0 và điểm C có hoành độ dương.
Đặt BC=a, suy ra AB=3a.
$S_{MNC}=S_{ABCD}-S_{AMN}-S_{BNC}-S_{DMC}=3a^2-\dfrac{a^2}{4}-a^2-\dfrac{3a^2}{4}=a^2$
$CN=a\sqrt{5}$ nên $d(M,CN)=\dfrac{2S_{MNC}}{CN}=\dfrac{2a}{\sqrt{5}}$
Mặt khác $d(M,CN)=\dfrac{4}{\sqrt{10}}$ nên $a=\sqrt{2}$
Suy ra $MC=\dfrac{a\sqrt{37}a}{2}=\dfrac{\sqrt{74}}{2}$
Gọi C(3c+2;c) (3c+2>0) thì
$MC^2=(3c+1/2)^2+(c+3/2)^2=\dfrac{74}{4}\Leftrightarrow (6c+1)^2+(2c+3)^2=74$
$40c^2+24c-64=0$ nên c=1 hoặc c=-8/5(loại) nên C(5;1)
+ Tương tự tìm được N từ việc N thuộc CN, $MN=\dfrac{a\sqrt{5}}{2},CN=a\sqrt{5}$
+ Sau khi tìm được N ta tìm được E từ việc M là trung điểm CE
+ Tọa độ A, B xác định qua hệ thức véc tơ: vecto(EA)=3.vecto(AN); vecto(AN)=2vecto(NB)
+ Tọa độ D xác định từ việc M là trung điểm AD.
trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD. Điểm N3;2) là trung điểm cạnh BC, các điểm M(-2;2) và P(2-1) lần lượt nằm trên cạnh ABvaf DC sao cho AM=Cp. xác định tọa độ các đỉnh của hình chữ nhật AND
Hình chữ nhật ADN gì bạn nhỉ?
Hình chữ nhật phải có 4 đỉnh
Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD , đường thẳng BC có phương trình x+y-4=0, điểm M(-1,-1) là trung điểm của đoạn AD . Xác định tọa độ các đỉnh hình chữ nhật ABCD , biết đường thẳng AB đi qua điểm e(-1,1)
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có \(x_A=2\), điểm C và trung điểm K của AD cùng thuộc trục Oy, tâm I thuộc trục Ox, AD = 2 AB. Tìm tọa độ các đỉnh của hình chữ nhật ABCD, biết rằng K có tung độ âm ?
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có hình chiếu vuông góc của A lên đường thẳng BD là H(-1/5;2/5), điểm M(0;-1) là trung điểm cạnh BC và điểm N(7/5;-4/5) là trung điểm của đoạn HD. Tìm tọa độ các đỉnh của hình chữ nhật ABCD.
Trên mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có A(3; 3); B(3; -3); C(–1; –3).
a) Xác định tọa độ điểm D và tính chu vi hình chữ nhật ABCD.
b) Có nhận xét gì về 2 đường thẳng OA và OB?
c) Xác định đường trung trực của đoạn AB.
Trong mặt phẳng hệ tọa độ Oxy , cho hình chữ nhật ABCD tâm O. Biết phương trình đường thẳng AB:x--y+5=0 và trung điểm M của cạnh BC thuộc đường thẳng x+3y-6=0, xác định tọa độ các đỉnh của hình chữ nhật ABCD
Phương trình đường thẳng qua O và song song AB có dạng:
Tọa độ M là nghiệm của hệ:
Phương trình đường thẳng BC qua M, nhận là 1 vtpt có dạng:
Tọa độ B là nghiệm của hệ:
M là trung điểm BC tọa độ C
O là trung điểm AC tọa độ A
O là trung điểm BD