Cho∆ ABC vuông tại A có BA=6cm và BC=10cm và BD cắt AC cho AD là x và DC là y tính độ dài x,y
Cho tam giác ABC vuông ở A , AB=6cm; AC=8cm; BC=10cm có đường cao AH cắt cạnh BC tại H, đường phân giác BD của góc ABC cắt AC tại D.
a) Tính độ dài các đoạn thẳng AD và DC .
b) Tính AH=?
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
Cho tam giác ABC cân tại A, có AB=6cm, BC=10cm .Vẽ đường phân giác BD (D thuộc cạnh AC).Tính độ dài các đoạn AD và DC
\(AC=AB=6\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)
\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)
\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)
Cho tam giác ABC, BC = 10cm, AC = 6cm, AB = 8cm. Đường phân giác của B ^ v à C ^ cắt cạnh AC và AB lần lượt tại D và E.
a) Tính độ dài các đoạn thẳng AE, EB, AD, DC.
b) Trên cạnh BC lấy điểm K sao cho B K = 40 7 c m . Chứng minh ba đường thẳng AK, BD, CE đồng quy
Cho tam giác ABC vuông tại A. Biết AC = 6cm, BC = 10cm, tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Tính độ dài đoạn AB
b) Chứng minh: AD = DH
c) So sánh độ dài hai cạnh AD và DC
d) Chứng minh tam giác KBC là tam giác cân
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm
a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b.Trên tia đối AB lấy điểm D sao cho AD=AB.Gọi K là trung điểm của cạnh BC,đường thẳng DK cắt AC tại M.Chứng minh BC=CD và tính độ dài đoạn thẳng AM
c.Đường trung trực d của đoạn thẳng ac cắt đường thẳng DC tại Q.Chứng minh ba điểm B,M,Q thẳng hàng.
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy_
Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm
a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b.Trên tia đối AB lấy điểm D sao cho AD=AB.Gọi K là trung điểm của cạnh BC,đường thẳng DK cắt AC tại M.Chứng minh BC=CD và tính độ dài đoạn thẳng AM
c.Đường trung trực d của đoạn thẳng ac cắt đường thẳng DC tại Q.Chứng minh ba điểm B,M,Q thẳng hàng.
giải :
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy ...
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D.
a) Cho biết AB=6cm, BD=10cm, CD=5cm. Tính độ dài cạnh BD.
b) Trên cạnh BC lấy E sao cho BE=BA. Chứng minh ∆DAE cân.
c) Gọi F là giao điểm của BA và ED. Vẽ CK vuông góc BD tại K. Chứng minh ba điểm K, F, C thẳng hàng.
Giúm em với mn em đang cần gấp ạa
a: BD=10cm
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=goc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
Cho tam giác ABC vuông tại A, đường phân giác BD, kẻ DE vuông góc với BC tại E, gọi H là giao điểm của hai đường thẳng BA và ED. a) Chứng minh rằng AD = DE, AB = BE. b) Biết AB = 6cm, BC = 10cm. Tính độ dài AC, BH. c) Chứng minh rằng AE // HC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
b: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
c: Xét ΔADH vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADH}=\widehat{EDC}\)
Do đó: ΔADH=ΔEDC
Suy ra: AH=EC
Xét ΔBHC có BA/AH=BE/EC
nên AE//HC
cho tam giác ABC vuông tại A có đường trung tuyến AM và đường phân giác BD(D thuộc AC), biết AB=6cm, AC=8cm. Đường thẳng qua D và song song với BC cắt AB tại E
a)Tính độ dài các đoạn thẳng BC,AD, DC và DE
b)Gọi I là giao điểm của AM và DE. chứng minh ID=IE