1 x = y và x+y = 27. tìm x.y
4 5
Bài 1: Nhân các đơn thức sau và tìm bậc và hệ số của đơn thức nhận được .
a,(-2x mũ 2.y ).(5.x.y mũ 4 )
b, (27 phần 10 .x mũ 4. y mũ 2 ).(5 phần 9.x.y )
c, (1 phần 3 .x mũ 3.y).(-xy)mũ 2
a/ \(\left(-2x^2y\right)5xy^4\)
\(=-10x^3y^5\)
a) Ta có: \(\left(-2x^2y\right)\cdot\left(5xy^4\right)\)
\(=\left(-2\cdot5\right)\cdot\left(x^2\cdot x\right)\cdot\left(y\cdot y^4\right)\)
\(=-10x^3y^5\)
b) Ta có: \(\left(\dfrac{27}{10}x^4y^2\right)\cdot\left(\dfrac{5}{9}xy\right)\)
\(=\left(\dfrac{27}{10}\cdot\dfrac{5}{9}\right)\cdot\left(x^4\cdot x\right)\cdot\left(y^2\cdot y\right)\)
\(=\dfrac{3}{2}x^5y^3\)
c) Ta có: \(\left(\dfrac{1}{3}x^3y\right)\cdot\left(-xy\right)^2\)
\(=\dfrac{1}{3}x^3y\cdot x^2y^2\)
\(=\dfrac{1}{3}x^5y^3\)
x/-3=y/5;x.y=-5/27
Tìm x;y và cách làm
Đặt \(\frac{x}{-3}=\frac{y}{5}=t\Rightarrow x=-3t;y=5t\)
Thay vào ta có :
x.y = -3t.5t = -5/27
=> -15t^2 = -5/27 => t^2 = 1/81 => t = 1/9 hoặc t = -1/9
(+) t = 1/9 => x = -3.1/9 = -1/3
=> y = 5t = 5.1/9 = 5/9
(+) t = -1/9 => x = 1/3 ; y = -5/9
Bài 1. Tìm x, y, z biết
a) 4x-5y=0 và 3x-2y=35
b) x/5=y/4 và x^3+ y^3 = 91
c) x/2=y/3 và x.y-6 = 0
d) x-1/3 = y-2/4 = x-3/5 và x+y+z= 30
Bài 2 : tìm x
a) 52/2x-1 = 13/30
b) 2x-3/x+1 = 4/7
c) 2x-3/3 = 27/2x.3
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Tìm x,y:
x-5/x-6=-2/3
2x-3/x+2=5-x/-0.5x+3
4x=5y và x.y=80
3x=2y=4z và 5x-2y+z=27
x/y+z+1=y/z+x+1=z/x-y-2=x+y+z
tìm các số nguyên x,y sau
a)x.y=-2
b)x.y=-3 và x<y
c)(x+1)(y-3)=-5
d)x.y=-11
e)x.y=-3 và x<y
f)(x-2)(y+5)=-3
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
tìm các số x,y nguyên ,biết:
a)x.y=5
b)x.y=5 và x>y
c)(x+1).(y-2)=-5
d)x.y=-3
e)x.y=-3 và x<y
g)(x-1).(y+1)=-3
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0