Chu vi của đường tròn tâm O là 120cm,cung AB của đường tròn có độ dài là 30cm.Số đo góc ở tâm AOB là
A.900 B.600 C.1200 D.1800
Giải thích hộ em với
Cho C là một điểm nằm trên cung lớn AB của đường tròn (O). Điểm C chia cung lớn AB thành hai cung AC và CB. Chứng rằng cung lớn AB có số đo cung AB = số đo cung AC + số đo cung CB
Hướng dẫn : Xét 3 trường hợp :
a) Tia OC nằm trong góc đối đỉnh của góc ở tâm AOB
b) Tia OC nằm trùng với tia đối của một cạnh của góc ở tâm AOB
c) Tia OC nằm trong một góc kề bù với góc ở tâm AOB
Cho nửa đường tròn tâm O, đường kính BC = 2a, A là điểm trên nửa đường tròn, góc ACB bằng (00 < <900 ). Đường tròn đường kính AB cắt BC ở D (D khác B), tiếp tuyến với đường tròn này ở D cắt AC tại I. Vẽ DEAB và DFAC (E thuộc AB, F thuộc AC).
Tính góc AOB theo
Chứng minh rằng: BEFC là một tứ giác nội tiếp.
Tính diện tích hình quạt tròn (ứng với cung nhỏ AB của đường tròn tâm O đường kính BC) và diện tích tam giác AOB.
Chứng minh rằng: DI là đường trung tuyến của tam giác ADC.
Tính khi DI // EF
cho đường (o) và điểm M bên ngoài đường tròn.Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm) a) chứng minh tứ giác MAOB nội tiếp b) Biết góc AMB = 40 độ .Tính số đo góc ở tâm góc AOB và số đo cung nhỏ AB? Số đo cung lớn AB
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.
Cho tam giác ABC vuông tại A có AB = 5cm, B = 60 0 . Đường tròn tâm I, đường kính AB cắt BC ở D
a, Chứng minh AD vuông góc vói BC
b, Chứng minh đường tròn tâm K đường kính AC đi qua D
c, Tính độ dài cung nhỏ BD
a, A D B ^ là góc nội tiếp trên đường kính AB => A D ⊥ B D
b, Do
A
D
C
^
=
90
0
nên DÎ đường tròn (k;
A
C
2
)
c, ∆IBD cân tại I có B ^ = 60 0 => ∆IBD đều => B I D ^ = 60 0
=> l B D ⏜ = π . 5 2 . 60 180 = 5 6 π cm
Cho tam giác cân AOB có góc AOB bằng 110 độ.Vẽ đường tròn tâm O , bán kính OA. Gọi C là một điểm trên đường tròn O , biết số đo cung AC=40 độ.Tính số đo cung nhỏ BC và cung lớn BC.
Cho em xin lời giải cụ thể với ạ,em cảm ơn
Theo giả thiết: Vì số đo cung \(\stackrel\frown{AC}=40^o\)
\(\Rightarrow\) Góc ở tâm \(\widehat{AOC}=40^o\)
Trường hợp 1: C thuộc cung nhỏ \(\stackrel\frown{AB}\)
- Số đo góc ở tâm \(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=110^o-40^o=70^o\)
Do vậy:
- Số đo cung nhỏ \(\stackrel\frown{BC}=70^o\)
- Số đo cung lớn \(\stackrel\frown{BC}=360^o-70^o=290^o\)
Trường hợp 2: C thuộc cung lớn \(\stackrel\frown{BC}\)
- Số đo góc ở tâm \(\widehat{BOC}=\widehat{BOA}+\widehat{AOC}=110^o+40^o=150^o\)
Do vậy:
- Số đo cung nhỏ \(\stackrel\frown{BC}=150^o\)
- Số đo cung lớn \(\stackrel\frown{BC}=360^o-150^o=210^o\)
Cho đường tròn tâm (O; R = 6cm) và dây AB sao cho góc AOB có số đo là 1200. Diện tích hình quạt AOB bằng:
\(S_{quạt\left(OAB\right)}=\dfrac{pi\cdot6^2\cdot120}{360}=12pi\)
Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm chính giữa cung AB . Vẽ dây CD có độ dài bằng R , Tính số đo góc ở tâm BOD trong các trường hợp:
a, D nằm trên cung CB
b, D nằm trên cung CA
cho đường tròn tâm (O) bán kính 3cm trên (O) lấy điểm A,B sao cho góc AOB=60 độ. Tính số đo cung nhỏ AB,diện tích hình quạt tròn OAB,độ dài cung lớn AB
* Số đo cung nhỏ AB=góc AOB( góc ở tâm)\(\Rightarrow\) Số đo cung nhỏ AB=60 độ
* Diện ích hình quạt tròn OAB là
\(S=\frac{\pi\times R2\times n}{360}=\frac{\pi\times9\times60}{360}=\frac{3}{2}\pi\approx\frac{3}{2}\times3,14\approx4,71\)cm2
* Số đo cung lớn AB= 360 độ - 60 độ =300 độ
Độ dài cung lớn AB là:
l=3,14*3*300/180=15,7 cm