giải phương trình sau : (x^2+x-2).(x^2+x-3)=12
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Bàil: Giải phương trình sau a) 2x - 3 = 3 - x b) 7x - 4 = 3x + 12 c) 3x - 6 + x = 9 - x d) 10x - 12 - 3x = 6 + x Bài 2: Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 4x + 6 <= 2x - 2 b) 3x + 15 < 0 c) 3x - 3 > x + 5 d) x - 4 > - 2x + 5 Bài3: a) Một người đi xe máy từ 4 đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h, nên thời gian về ít hơn thời gian đi là 20 phút. Tính AB ? b) Một người đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó quay về từ B về A với vận tốc 12 km/h. Cả đi lẫn về hết 4 giờ 30 phút. Tính quãng đường 4B Bài 4: Cho tam giác ABC vuông tại A với AB = 3cm AC= 4cm vẽ đường cao AE. a) Chứng minh rằng AABC đồng dạng với AEBA. b) Tia phân giác của góc ABC cắt AC tại F. Tính BF Bài 5: Cho tam giác ABC có AC = 8cm, AC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE AC AD AB
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Giải phương trình sau: (x+2)(x+3)(x+8)(x+12)=4x
nhân vào rồi chi cho x,xong đặt là ra
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
x - 2/4 - 2/3 ≥ 5x - 9 / 12
giải phương trình sau
1/ x +2 - 5/ x-2 = 2x-3 / x2
\(x-\frac{2}{4}-\frac{2}{3}\ge5x-\frac{9}{12}\)
\(\Leftrightarrow x-\frac{7}{6}\ge5x-\frac{3}{4}\)
\(\Leftrightarrow-4x\ge\frac{5}{12}\)
\(\Leftrightarrow-\frac{5}{56}\ge x\)
Giải phương trình sau :
((x-2)(x+10)/3) - ((x+4)(x+10)/12) = ((x-2)(x+4)/4)
Giải các bất phương trình sau:
1) \(\dfrac{\text{x}-1}{x-3}>1\) 2) \(\sqrt{\text{x}^2+x-12}< 8-x\)
1:
ĐKXĐ: x<>3
\(\dfrac{x-1}{x-3}>1\)
=>\(\dfrac{x-1-\left(x-3\right)}{x-3}>0\)
=>\(\dfrac{x-1-x+3}{x-3}>0\)
=>\(\dfrac{2}{x-3}>0\)
=>x-3>0
=>x>3
2: ĐKXĐ: \(\left[{}\begin{matrix}x>=3\\x< =-4\end{matrix}\right.\)
\(\sqrt{x^2+x-12}< 8-x\)
=>\(\left\{{}\begin{matrix}8-x>=0\\x^2+x-12< \left(8-x\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\x^2+x-12-x^2+16x-64< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =8\\17x-76< 0\end{matrix}\right.\)
=>\(x< \dfrac{76}{17}\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}3< =x< \dfrac{76}{17}\\x< =-4\end{matrix}\right.\)
giải phương trình sau: \(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
đặt x\(^2\)+ x - 2 là a
\(\Rightarrow\)a(a - 1) = 12
\(\Rightarrow\)\(a^2\)- \(a\)\(-12\)\(=\)\(0\)\(\Rightarrow\)\(a^2\)\(+3a-4a-12=0\)
\(\Rightarrow\)\(a\left(a+3\right)\)\(-4\left(a+3\right)\)\(=0\)
\(\Rightarrow\)\(\left(a+3\right)\).\(\left(a-4\right)\)\(=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}a+3=0\\a-4=0\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}a=-3\\a=4\end{cases}}\)
*với a= -3\(\Rightarrow\)x\(^2\)+2x -2 = -3 \(\Rightarrow\)x\(^2\)+ 2x +1=0\(\Rightarrow\)(x+1)\(^2\)=0 \(\Leftrightarrow\)x=1
*với a= 4 \(\Rightarrow\)x\(^2\)+2x -2 =6 \(\Rightarrow\)x\(^2\)+ 2x +4 =0 \(\Rightarrow\)(x+1)\(^2\)+ 3=0 ( vô lý do biểu thức này luôn lớn hơn hoặc bằng 3)
vậy pt có nghiệm là 1
\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
Đặt \(x^2+x-2=a\)
\(\Leftrightarrow a\left(a-1\right)=12\)
\(\Leftrightarrow a^2-a-12=0\)
\(\Leftrightarrow a^2-4a+3a-12=0\)
\(\Leftrightarrow a\left(a-4\right)+3\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-2=4\\x^2+x-2=-3\end{cases}}\)
Kết hợp tự giải pt rồi kết luận nghiệm x
giải phương trình sau
1/ x^2 -3x+2=0
2/ x^2 -6x+5=0
3/ 2x^2 +5x+3 =0
4/ x^2-8x+15=0
5/ x^2 -x-12=0
1/ x2-3x+2=0
⇒ (x2-2x)-(x-2)=0
⇒ x(x-2)-(x-2)=0
⇒ (x-1)(x-2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2) x2-6x+5=0
⇒x2-6x+9-4=0
⇒(x2-6x+9)-22=0
⇒(x-3)2-22=0
⇒(x-3-2)(x-3+2)=0
⇒(x-5)(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3) 2x2+5x+3=0
⇒ (2x2+2x)+(3x+3)=0
⇒ 2x(x+1)+3(x+1)=0
⇒ (x+1)(2x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)
4) x2-8x+15=0
⇒ (x2-8x+16)-1=0
⇒ (x-4)2-12=0
⇒ (x-4-1)(x-4+1)=0
⇒ (x-5)(x-3)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5) x2-x-12=0
⇒ (x2-4x)+(3x-12)=0
⇒ x(x-4)+3(x-4)=0
⇒ (x-4)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1: Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: Ta có: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3: Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4: Ta có: \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5: Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Giải phương trình sau: \(\left(x+3\right)\sqrt{15-x^2}=x^2-x-12\)
ta có \(\left(x+3\right)\sqrt{15-x^2}=\left(x-3\right)\left(x+4\right)\)
<=> \(\left(x-3\right)\left(\sqrt{15-x^2}-x-4\right)=0\)
đến đây dễ rồi