đặt x^2+x=y ta có
(y-2)(y-3)=12
y^2-2y-3y+6=12
y^2-5y+6=12
y^2-5y-6=0
y^2-6y+y-6=0
y(y-6)+y-6=0
(y-6)(y+1)=0
thế x^2+x=y ta có
(x^2+x-6)(x^2+x+1)=0
do x^2+x+1>0 nên x^2+x-6=0
x^2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
x+3=0 hoặc x-2=0
x=-3 hoặc x=2
đặt x^2+x=y ta có
(y-2)(y-3)=12
y^2-2y-3y+6=12
y^2-5y+6=12
y^2-5y-6=0
y^2-6y+y-6=0
y(y-6)+y-6=0
(y-6)(y+1)=0
thế x^2+x=y ta có
(x^2+x-6)(x^2+x+1)=0
do x^2+x+1>0 nên x^2+x-6=0
x^2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
x+3=0 hoặc x-2=0
x=-3 hoặc x=2
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
Giải phương trình sau: (x+2)(x+3)(x+8)(x+12)=4x
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
x - 2/4 - 2/3 ≥ 5x - 9 / 12
giải phương trình sau
1/ x +2 - 5/ x-2 = 2x-3 / x2
Giải phương trình sau :
((x-2)(x+10)/3) - ((x+4)(x+10)/12) = ((x-2)(x+4)/4)
giải phương trình sau: \(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
giải phương trình sau
1/ x^2 -3x+2=0
2/ x^2 -6x+5=0
3/ 2x^2 +5x+3 =0
4/ x^2-8x+15=0
5/ x^2 -x-12=0
giải các phương trình sau:
a, 5x-3=12
b, \(\dfrac{3}{x+1}=\dfrac{2}{x+2}\)
c, \(\left|2x+6\right|\)=x-3
giải phương trình sau
(x^2+x+1)(x^2+x+2)=12
giải các phương trình sau: 1. 4x-12=0 2. x(x+1)-(x+2)(x-3)=7 3. 7+2x=22-3x 4.(x-1)-(2x-1)=9-x