Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Anh officall
Xem chi tiết
Big City Boy
Xem chi tiết
Đặng Thị Mai Nga
Xem chi tiết
Bùi Lan Anh
26 tháng 3 2020 lúc 19:53

1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)

\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)

Sắp xếp theo lũy thừa giảm dần của biến x:

\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)

2. Bậc của đa thức: 4

Hệ số tự do: 1

Hệ số cao nhất: 7

3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)

\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)

\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)

\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)

\(\)

Khách vãng lai đã xóa
Nguyễn Văn Tuấn
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:09

a) Số mũ cao nhất của hàm số là 2, suy ra biểu thức\(f\left( x \right)\)đã cho là đa thức bậc hai

b) Thay \(x = 2\) vào \(f\left( x \right)\) ta có:

\(f\left( 2 \right) =  - {2^2} + 2 + 3 = 1 > 0\)

Suy ra \(f\left( 2 \right)\) dương.

Đào Thị Thùy Dương
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
kudo shinichi
21 tháng 3 2020 lúc 14:09

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

    Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

     Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

Khách vãng lai đã xóa
Nguyễn Ngọc An Hy
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2019 lúc 1:58

Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\)

\(\Rightarrow f\left(x+1\right)=a\left(x+1\right)^2+b\left(x+1\right)^2+c\left(x+1\right)+d\)

\(\Rightarrow f\left(x+1\right)=ax^3+\left(3a+b\right)x^2+\left(3a+2b+c\right)x+a+b+c+d\)

\(\Rightarrow f\left(x\right)+f\left(x+1\right)=2ax^3+\left(3a+2b\right)x^2+\left(3a+2b+2c\right)x+a+b+c+2d\)

Đồng nhất hệ số ta được:

\(\left\{{}\begin{matrix}2a=4\\3a+2b=14\\3a+2b+2c=16\\a+b+c+2d=17\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\\c=1\\d=5\end{matrix}\right.\)

Vậy \(f\left(x\right)=2x^3+4x^2+x+5\)