Gọi hai giao điểm của parabol và đường thẳng là A và B.
Gọi C và D theo thứ tự là hình chiếu của B và A trên Ox. Diện tích tứ giác ABCD là..... (đvdt).
Cho parabol (P) :y=x2 và d :y =2x+3
A) vẽ Parabol và d trên cùng mặt phẳng tọa độ
B) Tìm tọa độ giao điểm A,B của (P) và d .Gọi C ;D lần lượt là hình chiếu vuông góc của A;B lên Ox .Tinh diện tích tứ giác ABCD.
Bác học lớp 9 phải ko bài này khá đơn giản mình thấy ai cũng làm đc chỉ cần độg não thui chứ bác hỏi thế rùi vô phòng thi thì sao lớp 9 phải tự học thui
Cho hình thang vuông ABCD (AB//CD, góc A=góc D=90°) có AD=CD=2AB . Gọi E là điểm đối xứng của A qua B
a.Chứng mình AE=2AB và tứ giác AECD là hình vuông
b.Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích ∆DIC bằng diện tích tứ giác EBIM
c. Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI mũ 2 =ND.NV
Bài 3 cho tam giác ABC vuông tại A có đường cao AH gọi D, E theo thứ tự là hình chiếu của H trên AB và AC
1) Chứng minh tứ giác ADHE là hình chữ nhật
2) Gọi M và N lần lượt là trung điểm của BH, CH
a) Chứng minh DM//EN
b) Tính diện tích của tứ giác MDEN nếu diện tích của tam giác ABC là 6cm^2
3) Gọi O là trung điểm của BC, I là giao của AH và DE vẽ tia Ax vuông góc với tia OI cắt đường thẳng BC tại K chứng minh rằng 3 điểm K, D, E thẳng hàng
Cho điểm M thuộc AB vẽ về 1 phía của AB các hình vuông AMNP, PMLK có giao điểm đường chéo theo thứ tự C và D. Gọi G và Q là hình chiếu của C và D trên AB
a) Tứ giác CDQG là hình gì?
b) Gọi O là giao điểm của AC và BD. Tứ giác OCMD là hình gì?
c) Tính khoảng cách từ trung điểm I của CD đến Ab biết AB=a
d) Khi M di chuyển trên AB thì I di chuyển trên đường thẳng nào
Cho ΔABC có góc A = 900 và AH là đường cao. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC. Gọi I là giao điểm của AB và DH, K là giao điểm của AC và HE.
a) Tứ giác AIHK là hình gì? Vì sao ?
b) Chứng minh 3 điểm D, A, E thẳng hàng.
c) Chứng minh CB = BD + CE.
d) Biết diện tích tứ giác AIHK là a(đvdt). Tính diện tích ΔDHE theo a.
a) Xét tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật.
b) Do D và H đối xứng nhau qua AB nên AI cũng là phân giác góc DAH.
Vậy thì \(\widehat{BAH}=\frac{\widehat{DAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{EAH}}{2}\)
Vậy nên \(\widehat{DAE}=2\left(\widehat{BAH}+\widehat{CAH}\right)=180^o\)
Vậy D, A, E thẳng hàng.
c) Ta có ngay do D, H đối xứng với nhau qua AB nên BH = BD
Tương tự ta có HC = EC
Vậy nên C = BH + HC = BD + EC.
d) Ta thấy : \(\Delta ADI=\Delta AHI\Rightarrow S_{ADI}=S_{AHI}\)
Tương tự \(S_{AKH}=S_{AKE}\Rightarrow S_{AIHK}=S_{DIA}+S_{AKE}\)
\(\Rightarrow S_{AIHK}=\frac{1}{2}S_{DHE}\)
Vậy \(S_{DHE}=2a\left(đvdt\right)\)
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.
Bài 12:
:v Mình sửa P là trung điểm của EG
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE
Bài 7 failed nha bạn bạn xem lại đề
Cho tam giác ABC, gọi P,Q là hình chiếu của điểm A trên đường phân giác trong và ngoài của góc B.Gọi M, N là hình chiếu của điểm A trên đường phân giác trong và ngoài của góc C
a) Tứ giác AQBP và AMCN là hình gì
b) Chứng minh Q, M, P, N thẳng hàng
Em cần hình vẽ ạ
Giúp em với :(
a. Vì BQ và BP là p/g ngoài và trong của \(\widehat{ABC}\) nên \(BP\bot BQ\)
Lại có \(AQ\bot BQ, AP\bot BP\) nên AQPB là hcn
Cmtt ta được AMCN cũng là hcn
b. Gọi I là giao 2 đường chéo AB và PQ của hcn AQBP
\(\Rightarrow IB=IA=IC\\ \Rightarrow\widehat{IPB}=\widehat{IBP}=\widehat{PBC}\left(BP\text{ là p/g}\right)\)
Mà 2 góc này ở vị trí slt nên IP//BC
\(\Rightarrow P,Q\) nằm trên đtb của \(\Delta ABC\)
Tương tự M,N cũng nằm trên đtb \(\Delta ABC\)
Vậy M,N,Q,P thẳng hàng
Cho hai hàm số y = x2 và y = 2x + 3.
a. Tìm toạ độ giao điểm của hai đồ thị (A, B).
b. Tính diện tích tam giác OAB.
c. Gọi C và D lần lượt là hình chiếu vuông góc của của A, B trên trục hoành, tính diện tích tứ giác ABCD.
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2=2x+3\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{9;1\right\}\end{matrix}\right.\)
b: A(3;9) B(-1;1)
\(OA=\sqrt{3^2+9^2}=3\sqrt{10}\)
\(OB=\sqrt{\left(-1\right)^2+1^2}=\sqrt{2}\)
\(AB=\sqrt{\left(-4\right)^2+\left(-8\right)^2}=4\sqrt{5}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\)
\(S=\sqrt{\dfrac{3\sqrt{10}-\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{-3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}-4\sqrt{5}}{2}}\)
\(=\sqrt{\dfrac{576}{16}}=\dfrac{24}{4}=6\)