so sánh các số tự nhên a và b biết
\(\dfrac{1+2+3+...+a}{a}\) < \(\dfrac{1+2+3+...+b}{b}\)
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
a) Quy đồng mẫu số rồi so sánh hai phân số:
b) Viết các số sau theo thứ tự từ bé đến lớn:
\(\dfrac{3}{5},\dfrac{8}{5}\) và \(\dfrac{2}{5}\) \(\dfrac{5}{2},\dfrac{1}{6}\) và 1
a)
\(\dfrac{5}{9}< \dfrac{9}{9}\)
\(\dfrac{8}{7}>\dfrac{7}{7}\)
\(\dfrac{9}{9}=1\)
\(\dfrac{18}{4}>\dfrac{3}{4}\)
b)
\(\dfrac{2}{5},\dfrac{3}{5},\dfrac{8}{5}\)
\(\dfrac{5}{2}=\dfrac{15}{6},\dfrac{1}{6},1=\dfrac{6}{6}\rightarrow\dfrac{1}{6},\dfrac{6}{6},\dfrac{15}{6}\)
Cho các số hữu tỉ x=\(\dfrac{a}{b}\) ; y=\(\dfrac{c}{d}\) và z = \(\dfrac{m}{n}\) . Biết ad -bc =1 , cn-bm=1
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = \(\dfrac{a+m}{b+m}\) với b + n \(\ne\)0
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
So sánh các số tự nhiên A và B , biết rằng :
a ) A = 1 + 2 + 3 + ..... + 1000 , B = 1.2.3....11;
b ) A = 1.2.3... 20, B = 1 + 2 + 3 + 1000000
A= số số hạng của A là (1000-1):1+1=1000
tổng A là: 1000+1x1000:2=500500
B=39916800
Vậy A<B
b, A<B
so sánh các số tự nhiên a và b biết rằng:
\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
a) So sánh các phân số:
\(\dfrac{2}{5}\) và \(\dfrac{2}{7}\); \(\dfrac{5}{9}\) và \(\dfrac{5}{6}\); \(\dfrac{11}{2}\) và \(\dfrac{11}{3}\).
b) Nêu cách so sánh hai phân số có cùng tử số.
a
2/5> 2/7
5/9<5/6
11/2>11/3
cách so sánh :
sét mẫu số của phân số này bé hơn mẫu số của phân số kia thì phân số này lớn hơn
mẫu số của phân số này lớn hơn mẫu số của phân số kia thì phân số này bé hơn
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
So sánh a và b biết :
\(\dfrac{-1}{2}\)\(-\)\(\dfrac{3-2a}{3}\)>\(\dfrac{-1}{2}\)\(-\dfrac{3-2a}{3}\)