\(\dfrac{x+18}{9}=\dfrac{x}{27}\)
\(x+\dfrac{4}{9}+\dfrac{8}{18}+\dfrac{12}{27}+\dfrac{16}{36}=\dfrac{16}{9}\)
giúp mk với ạ
x + 4/9 + 8/18 + 12/27 + 16/36 = 16/9
x + (4/9+12/27)+(8/12+16/36) = 16/9
x + 8/9 + 10/9 = 16/9
x + 2 = 16/9
x = 16/9 - 2
x = -2/18
x+4/9+4/9+4/9+4/9=16/9
x+4/9.4=16/9
x+16/9=16/9
--> x = 0
\(\dfrac{21}{\cdot}\) x 3 = \(\dfrac{7}{3}\)
a.9 b. 18 c.27 d. 28
\(\dfrac{21}{x}\times3=\dfrac{7}{3}\)
\(\dfrac{21}{x}=\dfrac{7}{3}:3\)
\(\dfrac{21}{x}=\dfrac{7}{3}\times\dfrac{1}{3}\)
\(\dfrac{21}{x}=\dfrac{7}{9}\)
\(21:x=\dfrac{7}{9}\)
\(x=21:\dfrac{7}{9}\)
\(x=27\)
Vậy Chọn C
Cho \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a, Rút gọn P
b, Tính P khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)
tìm x biết
a) \(\dfrac{x}{27}=\dfrac{-3}{x}\)
b) \(\dfrac{-9}{x}=\dfrac{-x}{\dfrac{4}{49}}\)
c)\(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=\dfrac{-8}{15}\)
d)\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)
Mình chỉ giải câu a thôi,mấy câu còn lại dễ.
a)Ta có:\(\dfrac{x}{27}=\dfrac{-3}{x}\)
=>\(x^2=-3\cdot27=-81\)(Nhân chéo)
Mà x2>0 với mọi x nên :
Không có giá trị nào thỏa mãn điều kiện của x
Tìm x biết :
a) \(\dfrac{x}{27}=-\dfrac{3}{x}\) \(\Rightarrow2x=-3.27\Rightarrow2x=-81\Rightarrow x=-40,5\)
b) \(-\dfrac{9}{x}=-\dfrac{x}{\dfrac{4}{49}}\Rightarrow2x=-9.\left(-\dfrac{4}{9}\right)\Rightarrow2x=4\Rightarrow x=2\)
c) \(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\) ( mk nghĩ bn chép sai đề bài câu này )
\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{8}{15}-\dfrac{7}{19}\)
\(\Rightarrow\left|7x-\dfrac{5}{3}\right|=-\dfrac{257}{285}\)
\(\Rightarrow\left[{}\begin{matrix}7x-\dfrac{5}{3}=-\dfrac{257}{285}\\7x-\dfrac{5}{3}=\dfrac{257}{285}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{218}{1995}\\x=\dfrac{244.}{665}\end{matrix}\right.\)
d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\)
\(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\)
\(\left|\dfrac{1}{23}x\right|=-\dfrac{43}{95}-\dfrac{18}{90}\)
\(\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{23}x=\dfrac{62}{95}\\\dfrac{1}{23}x=-\dfrac{62}{95}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15\dfrac{1}{95}\\x=-15\dfrac{1}{95}\end{matrix}\right.\)
a)
\(\dfrac{x}{27}=\dfrac{-3}{x}\\ \Leftrightarrow x^2=-81\\ \Leftrightarrow x\in\varnothing\)
b)
\(-\dfrac{9}{x}=\dfrac{-x}{\dfrac{4}{49}}\\ \Leftrightarrow-9.\dfrac{4}{49}=-x^2\\ \Leftrightarrow-x^2=\dfrac{-36}{49}\\ \Leftrightarrow x^2=\dfrac{36}{49}\\ \Leftrightarrow x=\pm\dfrac{6}{7}\)
c)
\(\left|7x-\dfrac{5}{3}\right|+\dfrac{7}{19}=-\dfrac{8}{15}\\ \Rightarrow\left|7x-\dfrac{5}{3}\right|=\dfrac{-257}{285}\\ \)
Mà \(\left|7x-\dfrac{5}{3}\right|\ge0\Rightarrow x\in\varnothing\)
d) \(\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=\dfrac{18}{19}-1\dfrac{2}{5}\\ \Rightarrow\left|\dfrac{1}{23}x\right|+\dfrac{18}{90}=-\dfrac{43}{95}\\ \Rightarrow\left|\dfrac{1}{23}x\right|=-\dfrac{62}{95}\\ \Rightarrow x\in\varnothing\)
1. \(\left(y+\dfrac{1}{3}\right)\)+\(\left(y+\dfrac{1}{9}\right)\)+\(\left(y+\dfrac{1}{27}\right)\)+\(\left(y+\dfrac{1}{81}\right)\)=\(\dfrac{56}{81}\)
2. 18:\(\dfrac{Xx0,4+0,32}{X}\)+5=14
3. \(\dfrac{3xX}{2}\)=\(\dfrac{2}{5}+\)X\(+\dfrac{1}{3}\)
4. X-\(\dfrac{11}{15}\)=\(\dfrac{3+X}{5}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Bài 3:
$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$
$1,5\times x=x+\frac{11}{15}$
$1,5\times x-x=\frac{11}{15}$
$x\times (1,5-1)=\frac{11}{15}$
$x\times 0,5=\frac{11}{15}$
$x=\frac{11}{15}: 0,5=\frac{22}{15}$
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
tính hợp lí
a,\(\dfrac{27}{2}\) x 7,5 + \(\dfrac{27}{2}\) x 2,5 -150
b,3\(^3\)x \(\dfrac{18}{5}\) - 3\(^3\) x 2\(\dfrac{2}{5}\) - 3\(^3\) x \(\dfrac{6}{5}\)
a) \(\dfrac{27}{2}\cdot7,5+\dfrac{27}{2}\cdot2,5-150\)
\(=\dfrac{27}{2}\cdot\left(7,5+2,5\right)-150\)
\(=\dfrac{27}{2}\cdot10-150\)
\(=135-150\)
\(=-15\)
b) \(3^3\cdot\dfrac{18}{5}-3^3\cdot2\dfrac{2}{5}-3^3\cdot\dfrac{6}{5}\)
\(=3^3\cdot\dfrac{18}{5}-3^3\cdot\dfrac{12}{5}-3^3\cdot\dfrac{6}{5}\)
\(=3^3\cdot\left(\dfrac{18}{5}-\dfrac{12}{5}-\dfrac{6}{5}\right)\)
\(=3^3\cdot\left(\dfrac{18}{5}-\dfrac{18}{5}\right)\)
\(=3^3\cdot0\)
\(=0\)
CM đẳng thức
\(\dfrac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1}\)=\(\dfrac{1}{x^3+1}\)
Xét \(x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1\)
\(=\left(x^{27}+x^{21}+x^{15}+x^9+x^3\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=x^3\left(x^{24}+x^{18}+x^{12}+x^6+1\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
Vậy ta có
\(VT=\dfrac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\dfrac{1}{x^3+1}\) (đpcm)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
Ai giúp mình với, mình cần sự giúp đỡ, mai nộp bài rồi