So sánh hai số A=11.2009.2010 và B=11.2008.2011
1. So sánh hai phân số
a). 3/4 và 5/10. b). 35/25 và 16/14
2. So sánh hai phân số bằng hai cách khác nhau
a). 7/5 và 5/7. b). 14/16 và 24/21
1.a) 3/4 > 5/10
b) 35/25 > 16/14
2.a) 7/5 > 5/7
b) 14/16 < 24/21
HT nha
( bạn t.i.c.k cho mik nha, mik cảm ơn )
Bạn giúp mình câu này nhé so sánh 317/633 và 371/743
a) Cho hai số thực a = -1,25 và b = -2,3. So sánh a và b, |a| và |b|.
b) Ta có nhận xét trong hai số âm, số nào có giá trị tuyệt đối lớn hơn là số bé hơn.
Em hãy áp dụng nhận xét này để so sánh -12,7 và -7,12.
a) Vì 1,25 < 2,3 nên -1,25 > -2,3 hay a > b
\(\begin{array}{l}\left| a \right| = \left| { - 1,25} \right| = 1,25;\\\left| b \right| = \left| { - 2,3} \right| = 2,3\end{array}\)
Vì 1,25 < 2,3 nên \(\left| a \right| < \left| b \right|\).
b) Ta có -12,7 và -7,12 là các số âm, |-12,7|=12,7; |-7,12|=7,12
Vì 12,7 > 7,12 nên |-12,7| > |-7,12|
Vậy -12,7 < -7,12.
So sánh hai số a và b trong mỗi trường hợp sau:
a) a, b là hai số dương và |a| < |b|;
b) a, b là hai số âm và |a| < |b|
a) Khi a, b là hai số dương:
|a| = a; |b| = b
Khi đó, |a| < |b| , tức là a < b
Vậy a < b
b) Khi a, b là hai số âm:
|a| = - a; |b| = - b
Khi đó, |a| < |b| , tức là - a < - b hay a > b
Vậy a > b
a: |a|<|b|
mà a,b dương
nên a<b
b: a,b là hai số âm
|a|<|b|
Do đó: a>b
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
a) So sánh hai số 291 và 515
b)So sánh hai số 521 và 2614
a)Ta có: \(2^{91}=2^{90}x2=\left(2^6\right)^{15}x2=64^{15}x2\)
Vì 6415 >515 =>6415 x 2 >515
Hay 2 91 > 515
b)Ta có: 521=7812514
vì 7812514>2614nên 521>2614
a) So sánh hai số thập phân sau: -0,617 và -0,614.
b) Nêu quy tắc so sánh 2 số thập phân hữu hạn.
a) Vì 0,617 > 0,614 nên -0,617 < -0,614
b) * So sánh 2 số thập phân khác dấu: Số thập phân âm luôn nhỏ hơn số thập phân dương
* So sánh 2 số thập phân dương:
Bước 1: So sánh phần số nguyên của 2 số thập phân đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn
Bước 2: Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng một hàng( sau dấu ","), kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn
*So sánh 2 số thập phân âm:
Nếu a < b thì –a > - b
a: -0,617<-0,614
b: Chúng ta sẽ so sánh phần nguyên trước. nếu phần nguyên bên nào lớn hơn thì bên đó lớn hơn. Nếu phần nguyên bằng nhau thì sẽ so đến phần thập phân với quy tắc tương tự theo chiều từ trái qua phải, chừng nào tìm được hai số ở cùng vị trí mà số này lớn hơn số kia thì kết luận số đó lớn hơn
So sánh hai phân số bằng cách so sánh phần bù (hoặc phần hơn) với 1
a) 2017 2016 v à 2019 2018
b) 73 64 v à 51 45
a) Ta có: 2017 2016 = 1 + 1 2016 ; 2019 2018 = 1 + 1 2018 . Vì 1 2016 > 1 2018 nên 2017 2016 > 2019 2018
b) Ta có: 73 64 = 1 + 9 64 ; 51 45 = 1 + 6 45 . Vì 9 64 = 18 128 > 6 45 = 18 135 nên 73 64 > 51 45
So sánh hai phân số bằng cách so sánh phần bù (hoặc phần hơn) với 1
a) 26 27 v à 96 97
b) 102 103 v à 103 105
a) Ta có: 1 − 26 27 = 1 27 ; 1 − 96 97 = 1 97 . Vì 1 27 > 1 97 nên 26 27 < 96 97
b) Ta có: 1 − 102 103 = 1 103 ; 1 − 103 105 = 2 105 . Vì 1 103 = 2 206 < 2 105 nên 102 103 > 103 105
Cho a - 3 > b - 3. So sánh hai số a và b
A. a ≥ b
B. a < b
C. a > b
D. a ≤ b
Ta có a - 3 > b - 3 ⇒ ( a - 3 ) + 3 > ( b - 3 ) + 3 ⇔ a > b
Chọn đáp án C.