Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Huyền
Xem chi tiết
Carthrine
29 tháng 6 2016 lúc 22:01

tam giác ABC vuông tại A, 
*Theo định lý pytago: 
BC^2= Ac^2 + AB^2 
BC =căn AC^2 + AB^2 
= Căn 6^2 + 8^2 
BC = căn 100 = 10 (cm) 
*Theo hệ thức lượng: 
AH.BC = AC.AB 
hay AH.10 = 6. 8 
=> AH = 6.8/10 = 4.8 (cm)

Vũ Duy Hoàng
Xem chi tiết
Nguyễn Huy Tú
12 tháng 5 2021 lúc 12:20

A B C 6 8 10 H D D

a, dễ mà dài, bạn tự làm nhé 

b, Vì AD là đường pg của tam giác ABC nên 

\(\frac{AC}{AB}=\frac{CD}{BD}\)( tính chất )

mà \(BD=BC-CD=10-CD\)(*)

\(\Rightarrow\frac{8}{6}=\frac{CD}{10-CD}\Rightarrow CD=\frac{40}{7}\)cm 

Theo (*) suy ra : \(BD=10-\frac{40}{7}=\frac{30}{7}\)cm 

Khách vãng lai đã xóa
Bảo Ngân Tạ Ngọc
Xem chi tiết
Trường An
14 tháng 11 2023 lúc 21:20

hình tự vẽ

xét tam giá ABC vuông tại A, đường cao AH

=> AB.AC=BC.AH(hệ thức lượng)

=>AH=(AB.AC)/BC=4,8(cm)

vậy AH= 4,8 cm

Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 11:40

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Dream
11 tháng 7 2021 lúc 11:35


 

 

Đỗ Cảnh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 9:45

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

b: AH=6*8/10=4,8cm

Hữu Phước
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 21:26

AH=6*8/10=4,8cm

Hoang Vu My Nuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 10:23

a: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm; CD=40/7cm

b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

Kon Kon
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.