Tam giác vuông tại A có AB= 6cm,AC= 8cm,BC=10cm.Đường cao AH là?
Cho tam giác ABC vuông tại A có cạnh AB= 6cm, AC=8cm, BC=10cm.Đường cao AH.Tính AH
tam giác ABC vuông tại A,
*Theo định lý pytago:
BC^2= Ac^2 + AB^2
BC =căn AC^2 + AB^2
= Căn 6^2 + 8^2
BC = căn 100 = 10 (cm)
*Theo hệ thức lượng:
AH.BC = AC.AB
hay AH.10 = 6. 8
=> AH = 6.8/10 = 4.8 (cm)
Cho tam giác ABC vuông tại A, có AB =6cm;AC=8cm , BC=10cm.Đường cao AH(H thuộc BC)
a) Chỉ ra các cặp tam giác đồng dạng
b) Cho AD là đường phân giác của tam giác ABC (D thuộc BC) . Tính độ dài DB và DC
c) Chứng minh rằng BH.HC=AH bình
help thank
a, dễ mà dài, bạn tự làm nhé
b, Vì AD là đường pg của tam giác ABC nên
\(\frac{AC}{AB}=\frac{CD}{BD}\)( tính chất )
mà \(BD=BC-CD=10-CD\)(*)
\(\Rightarrow\frac{8}{6}=\frac{CD}{10-CD}\Rightarrow CD=\frac{40}{7}\)cm
Theo (*) suy ra : \(BD=10-\frac{40}{7}=\frac{30}{7}\)cm
Tam giác ABC vuông tại A có AB = 6cm,AC =8cm, BC=10cm.Tính độ dài chiều cao AH
hình tự vẽ
xét tam giá ABC vuông tại A, đường cao AH
=> AB.AC=BC.AH(hệ thức lượng)
=>AH=(AB.AC)/BC=4,8(cm)
vậy AH= 4,8 cm
Cho tam giác ABC vuông tại A có AB = 6cm, AC =8cm. Kẻ đg cao AH (H thuộc BC ) tia phân giác góc HAC cắt BC tại D. Kẻ DK vuông góc AC
a, C/m tam giác AHD = tam giác AKD. => AH = AK
b, C/m tam giác ABD là tam giác cân
b, Tính độ dài BC
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)
\(\widehat{BAD}+\widehat{KAD}=90^0\)
mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
nên \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔABD cân tại B(Định lí đảo của tam giác cân)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm,đường cao AH,tia phân giác của góc A cắt BC tại D
a)Tính độ dài đoạn thẳng BC và CD?
b)Tính chiều cao AH của tam giác ABC
c)Lấy điểm E sao cho tứ giác ADCE là hình bình hành.Kẻ EM vuông góc với AC(M thuộc AC), AN vuông góc với CE(N thuộc tia CE) Chứng minh tam giác HAC đồng dạng với tam giác MEA và CD.CH+CE.CN=AC^2
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
b: AH=6*8/10=4,8cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm, AC=8cm, BC=10cm. Tính AH
Cho tam giác ABC vuông tại A có AB = 6cm , AC = 8cm , đường phân giác góc A cắt BC tại D a) Tính BC , DB , DC b ) Vẽ đường cao AH , tính AH , HD
a: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính độ dài các cạnh BC, AH ,BH
a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:
∠B chung
⇒ ∆ABC ∽ ∆HBA (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10
Do ∆ABC ∽ ∆HBA (cmt)
⇒ AC/AH = BC/AB
⇒ AH = AB.AC/BC
= 6.8/10
= 4,8 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ BH² = AB² - AH²
= 6² - (4,8)²
= 12,96
⇒ BH = 3,6 (cm)
a) Ta có:
- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.
- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.
- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).
b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:
- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.
- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.
- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.
Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.