Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 14:18

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}>\dfrac{49}{100}=A\)

Vũ Phương Nhi
Xem chi tiết
BÍCH THẢO
23 tháng 9 2023 lúc 22:59

a)19 - (x + 23)=24- 6

   19 - (x + 23) = 16 - 6 

    19 - (x + 23) = 10

     (x + 23) = 19 - 10

      x + 23= 9

      x + 2= 33

      x + 2 = 3

      x= 3-2

       x= 1

BÍCH THẢO
23 tháng 9 2023 lúc 23:08

sửa lại :

a)19 - (x + 23)=24- 6

   19 - (x + 23) = 16 - 6 

    19 - (x + 23) = 10

     (x + 23) = 19 - 10

      x + 23= 9

    =>  x + 8= 9             x= 1

      => x + 8 =-9                     x= -17

      

       

Vũ Phương Nhi
24 tháng 9 2023 lúc 6:49

sửa lại b) 4+ 3: (x + 1) = 65

Đỗ Hải Yến
Xem chi tiết
ngọc ánh 2k8
Xem chi tiết
ngọc ánh 2k8
6 tháng 11 2021 lúc 10:40

giúp mình nhé

Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 10:42

\(a,\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2b+2+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1+1=2\\b=1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}2a-4+a=7\\b=4-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{3}\\b=4-\dfrac{11}{3}=\dfrac{1}{3}\end{matrix}\right.\)

pham thi thuy ninh
Xem chi tiết
Trà My
12 tháng 5 2017 lúc 9:38

A=...

<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)

pham thi thuy ninh
12 tháng 5 2017 lúc 9:39

sai ùi 

Lê Thị Mỹ Hằng
12 tháng 5 2017 lúc 9:40

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=\frac{1}{3}.\frac{9}{20}\)

\(A=\frac{3}{20}\)

Vì \(\frac{3}{20}< 1\Rightarrow A< 1\)

Hoàng Thu Hương
Xem chi tiết
Akai Haruma
24 tháng 3 2021 lúc 21:02

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

Khôi Nguyên Hacker Man
Xem chi tiết
Vũ Thu An
Xem chi tiết
Xem chi tiết
Minh Phương
24 tháng 4 2023 lúc 20:08

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 9 2021 lúc 8:08

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)