Cho tam giác ABC có AB=4 cm,AC=5cm,G là trọng tâm tam giác.Chứng minh rằng AG<3 cm
Cho tam giác ABC có AB=4 cm,AC=5cm,G là trọng tâm tam giác.Chứng minh rằng AG<3 cm
Cho tam giác ABC có AB = 4cm, AC = 5cm, G là trọng tâm. Chứng minh: AG < 3cm
Bài 2 a, Cho tam giác abc vuông tại a. AB= 4 cm, BC= 7 cm. Tính AC. b, G là trọng tâm của tam giác abc. Tính AG
Bài 2 a, Cho tam giác abc vuông tại a. AB= 4 cm, BC= 7 cm. Tính AC. b, G là trọng tâm của tam giác abc. Tính AG
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+16=49\)
=>\(AC=\sqrt{49-16}=\sqrt{33}\left(cm\right)\)
b: Gọi M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
G là trọng tâm
Do đó: AG=2/3AM
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=3,5\left(cm\right)\)
=>\(AG=\dfrac{2}{3}\cdot AM=\dfrac{2}{3}\cdot\dfrac{7}{2}=\dfrac{7}{3}\left(cm\right)\)
cho tam giác ABC có AB = AC = 5cm, BC = 5cm đường trung tuyến AM . TRọng tâm G . tính Ag
cho tam giác ABC với AB = 5cm, AC = 6cm, BC = 7cm. Gọi G là trọng tâm của tam giác ABC, O là giao điểm của 2 tia phân giác trong của tam giác ABC. Chứng minh rằng GO // AC
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của Thanh Thanh - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC có G là trọng tâm. Chứng minh \(\overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} .\)
Với điểm M bất kì ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)
Chọn M trùng A, ta được: \(\overrightarrow {AA} + \overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AC} = 3\overrightarrow {AG} .\)
Cho tam giác ABC có AB = 9 cm, AC = 12 cm, BC = 15 cm
a. Tam giác ABC có dạng đặc biệt nào? Vì sao?
b. Vẽ trung tuyến AM của tam giác ABC, kẽ MH vuông góc với AC. Trên tia đối tia MH lấy điểm K sao cho MK = MH. Chứng minh rằng G là trọng tâm của tam giác ABC.
c. BH cắt AM tại G. Chứng minh rằng G là trọng tâm của tam giác ABC.
d. Nối GC. Chứng minh rằng : S GBC = S GBC = S GCA
tam giác ABC cân có AB = AC = 5cm; BC = 6cm. Gọi G là trọng tâm tam giác ABC. Lấy điểm D đối xứng với G qua BC.. chứng minh rằng tứ giác BDCG là hình thoi
(tự vẽ hình (: )
Gọi O là giao điểm của GD và BC
Vì G là trọng tâm của tam giác ABC cân (gt)
=> OA là đường trung tuyến của tam giác ABC cân
=> OB=OC => O trung điểm BC
Lại có D đối xứng với G qua BC => O trung điểm GD
Mà GD và BC cắt nhau tại O
=> BDCG là hbh ( 2 đg thẳng cắt nhau tại trg đ mỗi đg) (1)
Lại có: OA là đg trung tuyến của tam giác ABC cân
=> OA là đg cao của tam giác ABC cân
=> AD_|_BC
=>GD_|_BC (2)
Từ (1) và (2) => tứ gíac BDCG là hình thoi (hbh có hai đg chéo _|_ vs nhau) (đpcm)