Chứng minh pối giản với nthuoocj Nn số : 9n+2/4n+1 tôi
Với mọi số tự nhiên n,hãy chứng minh các phân số sau đây là phân số tối giản
c.7n+4/9n+5
a.2n+1/4n+3.
b.4n+1/12n+7
Nhớ trả lời nhanh nha
6)Chứng minh phân số tối giản
\(\frac{2n+1}{4n+3};\frac{4n+1}{12n+7};\frac{7n+4}{9n+5}\)
Đặt UCLN(2n + 1 ; 4n + 3) = d
2n + 1 chia hết cho d => 4n + 2 chia hết cho
Mà UCLN(4n + 2 ; 4n + 3) = 1
=> d = 1 => DPCM
1.
chứng minh rằng phân số a/a+1 là phân số tối giản (a thuộc Z)
2.
chứng minh rằng phân số 246913579/123456790 là phân số tối giản.
3.
chứng minh rằng phân số 4n+8/2n+3 là phân số tối giản.
trả lời nhanh lên đi tôi nay mình phải đi học rồi
Chứng minh phân số sau là phân số tối giản:
a, 4n+8/2n+3 với n thuộc N
b, 7n+4/9n+5 với n thuộc N
c, 12n+1/30n+2 với n thuộc N
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
a,n+3/n+4
b,3n+3/9n+8
c,4n+3/5n+4
d,n+1/2n+3
e,2n+3/4n+8
f, 3n+2/5n+3
giúp mình với
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
b, Chứng minh rằng \(\dfrac{3n+1}{9n+6}\) là phân số tối giản với mọi n ϵ ¥
Gọi \(d=ƯC\left(3n+1;9n+6\right)\) với \(d\ge1\)
Do \(\left\{{}\begin{matrix}3n+1⋮̸3\\9n+6⋮̸3\end{matrix}\right.\) ;\(\forall n\in N\Rightarrow d\ne3\)
Ta có:
\(\left\{{}\begin{matrix}3n+1⋮d\\9n+6⋮d\end{matrix}\right.\) \(\Rightarrow9n+6-3\left(3n+1\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow\left[{}\begin{matrix}d=3\\d=1\end{matrix}\right.\)
Mà \(d\ne3\Rightarrow d=1\)
\(\Rightarrow\dfrac{3n+1}{9n+6}\) tối giản với mọi \(n\in N\)
Chứng minh rằng mọi số tự nhiên n, các phân số sau là các phân số tối giản
a) A=2n+1/4n+3. B=14n+1/12n+7. C=7n+4/9n+5
Chứng minh rằng với n thuộc N* các phân số sau là phân số tối giản
a. 3n-2/4n-3
b. 4n+1/6n+1
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
Chứng minh rằng với mọi số tự nhiên \(n\) thì phân số \(\dfrac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên thì phân số tối giản