Gọi \(d=ƯC\left(3n+1;9n+6\right)\) với \(d\ge1\)
Do \(\left\{{}\begin{matrix}3n+1⋮̸3\\9n+6⋮̸3\end{matrix}\right.\) ;\(\forall n\in N\Rightarrow d\ne3\)
Ta có:
\(\left\{{}\begin{matrix}3n+1⋮d\\9n+6⋮d\end{matrix}\right.\) \(\Rightarrow9n+6-3\left(3n+1\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow\left[{}\begin{matrix}d=3\\d=1\end{matrix}\right.\)
Mà \(d\ne3\Rightarrow d=1\)
\(\Rightarrow\dfrac{3n+1}{9n+6}\) tối giản với mọi \(n\in N\)