Cho x^2 +( m-1)x +5m - 6 = 0 . Gọi x1,x2 là nghiệm phương trình . Tim m / 4x1 + 3x2 = 1
Cho phương trình x^2+ (m-1) x+5m-6=0
a) giải phương trình khi m =-2
b) tìm m để 2 nghiệm x1 và x2 thoả mãn hệ thức 4x1+ 3x2=1
mn giúp em với ạ!!!
a) thay m= -2 vào pt , ta có :
→x2 +( -2-1)x+5.(-2)-6=0
↔x2-3x-16=0
Δ=(-3)2-4.1.(-16)
Δ=9+64
Δ=73 > 0
vì delta > 0 nên ta có 2 nghiệm phân biệt
x1=\(\dfrac{3+\sqrt{73}}{2.1}\)=\(\dfrac{3+\sqrt{73}}{2}\)
x2=\(\dfrac{3-\sqrt{73}}{2}\)
b)Hệ thức vi et :
x1+x2=\(\dfrac{-b}{a}=\dfrac{-\left(m-1\right)}{1}=-m+1\)(1)
x1.x2=\(\dfrac{c}{a}=\dfrac{5m-6}{1}=5m-6\)(2)
Ta có : 4x1+3x2=1(3)
Từ (1) và (3) , ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=-m+1
\\4x1+3x2=1\end{matrix}\right.
\)
\(\left\{{}\begin{matrix}3x_1+3x_2=-3m+3\\4x_1+3x_2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_2=-4m+3\end{matrix}\right.\)
Ta thay x1 x2 vào (2) , ta có :
➝(3m-2).(-4m+3)=5m-6
↔-12m2+12m=0
↔12m(-m+1)=0
-> 12m=0 -> m=0
-> -m+1=0 ->m=1
Vậy m = 0 và m =1 thì sẽ tm hệ thức
Cho phương trình:
a,mx2+2(m-4)x+m+7=0
Tìm m để x1-2x2=0
b, x2+(m-1)x+5m-6=0
Tìm m để 4x1+3x2=1
c,3x2-(3m-2)x-(3m+1)=0
TÌm m để 3x1-5x2=6
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
Với giá trị nào của m thì pt: x^2+(m-1)x+5m-6=0 có hai nghiệm x1, x2 thỏa 4x1+3x2=1
Để phương trình \(x^2+\left(m-1\right)x+5m-6=0\)có 2 nghiệm riêng biệt là \(x_1;x_2\)
\(\Rightarrow\Delta>0\)
\(\Rightarrow m^2-22m+25>0\)
\(\Rightarrow m\in\left(-\infty;11-4\sqrt{6}\right)\)
\(\Rightarrow m\in\left(\infty;11+4\sqrt{6}\right)\)
Khi đó 2 nghiệm của phương trình là:
\(x_1=\frac{\left(1-m\right)+\sqrt{\Delta}}{2}\)và \(x_2=\frac{\left(1-m\right)-\sqrt{\Delta}}{2}\) Tiếp tục thay vào làm tiếp
Hoặc ta cũng có thể làm theo cách khác bằng cách áp dụng định lý Vi-et ta có hệ phương trình sau:
\(\hept{\begin{cases}4x_1+3x_2=1\\x_1+x_2=m-1\\x_1x_2=5m-6\end{cases}}\)Tiếp tục thay vào rồi giải phương trình :)
Cho phương trình x 2 – (m + 1)x – 3 = 0 (1), với x là ẩn, m là tham số. Gọi x 1 ; x 2 là hai nghiệm của phương trình (1). Đặt B = 3 x 1 2 + 3 x 2 2 + 4 x 1 + 4 x 2 - 5 x 1 2 + x 2 2 - 4 . Tìm m khi B đạt giá trị lớn nhất.
A. - 1 2
B. −1
C. 2
D. 1 2
cho phương trình x^2-2(m+1)x+m-2=0 với x là ẩn số a) chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m b) gọi 2 nghiệm của phương trình là x1,x2 tìm GTNN của x1^2+2(m+1)x2-5m+2
a: Δ=(2m+2)^2-4(m-2)
=4m^2+8m+4-4m+8
=4m^2+4m+12
=(2m+1)^2+11>=11>0
=>Phương trình luôn cóhai nghiệm phân biệt
b: x1^2+2(m+1)x2-5m+2
=x1^2+x2(x1+x2)-4m-m+2
=x1^2+x1x2+x2^2-5m+2
=(x1+x2)^2-2x1x2+x1x2-5m+2
=(2m+2)^2-(m-2)-5m+2
=4m^2+8m+4-m+2-5m+2
=4m^2+2m+8
=4(m^2+1/2m+2)
=4(m^2+2*m*1/4+1/16+31/16)
=4(m+1/4)^2+31/4>=31/4
Dấu = xảy ra khi m=-1/4
Cho x2−2(m−1)x+(m+1)2=0x2−2(m−1)x+(m+1)2=0 có 2 nghiệm x1, x2 t/m x1+x2≤4x1+x2≤4. Tìm MAX, MIN của P=x31+x32+x1.x2(3x1+3x2)+8x1.x2
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
Cho phương trình ẩn x: x^2 – (5m – 1)x + 6m^2 – 2m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
b) Gọi x1, x2 là các nghiệm của (1). Tìm m để x1^2 + x2^2 = 1
a: \(\text{Δ}=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)
\(=25m^2-10m+1-24m^2+8m=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)
\(\Leftrightarrow13m^2-6m=0\)
=>m(13m-6)=0
=>m=0 hoặc m=6/13
Cho phương trình \(x^2-x+m+1=0\) ( m là tham số). Gọi x1,x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho x12 + x1x2 = 7 - 3x2
\(\Delta'=1-4\left(m+1\right)=-4m-3>0\Rightarrow m< -\dfrac{3}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_1x_2=7-3x_2\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)=7-3x_2\)
\(\Leftrightarrow x_1=7-3x_2\)
\(\Leftrightarrow x_1+x_2=7-2x_2\)
\(\Leftrightarrow1=7-2x_2\Rightarrow x_2=3\Rightarrow x_1=1-x_2=-2\)
Thế vào \(x_1x_2=m+1\Rightarrow-6=m+1\Rightarrow m=-7\)