Cho ∆ABC vuông tại A, AB>AC, M là 1 điểm tuỳ ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt AB tại I và cắt tia CA tại D. Chứng minh rằng:
a) ∆ABC đồng dạng với ∆MDC
b) BI.BA=BM.BC
c) CI cắt BD tại K. Chứng minh BI.BA + CI.CK không phụ thuộc vào vị trí của điểm M
d) \(\widehat{MAI}=\widehat{BDI}\), từ đó suy ra AB là tia phân giác của góc MAK.