\(\dfrac{8x^2+16x^2+8x}{4x^2+4x}\)
giúp với mn ơi
limx→-∞
\(\dfrac{1}{4x-2}\sqrt{\dfrac{8x^3+x-1}{x+4}}\)
giúp mình với mn ơi=(((
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
Với giá trị nào của x, giá trị của biểu thức sau bagfw 0:
\(\dfrac{1+8x}{4+8x}\) - \(\dfrac{4x}{12x-6}\) + \(\dfrac{\dfrac{32}{3}x^2}{4-16x^2}\) ??
Bài 1 : ( 3 đ ) : Rút gọn các phân thức sau a)\(\dfrac{16x^2-1}{16x^2-8x+1}\) b)\(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(a.\)
\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)
\(b.\)
\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)
a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
\(=\dfrac{4x+1}{4x-1}\)
b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{y-2x}{y+2x}\)
Bài1 Tìm GTLN của biểu thức
A=-x^2-10x+1
B=-4x^2-6x-5
C=-16x^2+8x-1
Bài2 Tìm GTNN của biểu thức
A=4x^2-8x+5
B=25x^2-10x-3
C=49x^2-28x+1
giúp mình với T-T
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
Giải giúp mình với : Giải phương trình : sqrt(3-4x) + sqrt(4x+1) = -16x2-8x+1
Ai giúp mình với
Bài 2: Cho biểu thức \(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\) . Hãy rút gọn biểu thức P
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)
https://sg.docworkspace.com/l/sIM-LioBEocfloAY