\(\dfrac{8x^2+16x^2+8x}{4x^2+4x}\)
= \(\dfrac{24x^2+8x}{4x^2+4x}\)
= \(\dfrac{4x(6x+2)}{4x(x+1)}\)
= \(\dfrac{6x+2}{x+1}\)
\(\dfrac{8x^2+16x^2+8x}{4x^2+4x}\\ =\dfrac{8x\left(x+2x+1\right)}{4x\left(x+1\right)}\\ =\dfrac{2\left(x+2x+1\right)}{x+1}\)
\(\dfrac{8x^2+16x^2+8x}{4x^2+4x}\)
= \(\dfrac{24x^2+8x}{4x^2+4x}\)
= \(\dfrac{4x(6x+2)}{4x(x+1)}\)
= \(\dfrac{6x+2}{x+1}\)
\(\dfrac{8x^2+16x^2+8x}{4x^2+4x}\\ =\dfrac{8x\left(x+2x+1\right)}{4x\left(x+1\right)}\\ =\dfrac{2\left(x+2x+1\right)}{x+1}\)
Rút gọn biểu thức sau:
\(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}+\dfrac{3x}{12-3x^2}-\dfrac{1}{x+2}\right)\)
\(\dfrac{\text{80x3-125x}}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\) \(\dfrac{9-\left(x+5^{ }\right)^2}{x^2+4x+4}\)
\(\dfrac{32x-8x^2+2x^3}{x^3+64}\) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
rút gọn:a) \(\dfrac{5x^2+10xy+y^2}{3x^3+3y^3}\)
b)\(\dfrac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}\)
c)\(\dfrac{2x^2+10x+2}{x^3-4x}\)
d)\(\dfrac{8x^3-1}{-4x^2-1-2x}\)
Tìm giá trị lớn nhất hoặc nhỏ nhất
\(\dfrac{2}{-4x^2+8x-5}\)
(x^3-x^2)^2-4x^2+8x-4=0
Rút gọn:
a, \(\dfrac{4x^2-8xy}{10y-5x}\)
b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}\)
c, \(\dfrac{x^2+8x+16}{x^2-16}\)
Rút gọn phân thức 8x^3+y^3/y^3+2xy^2+y^2-4x^2
Rút gọn các phân thức
a)\(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
b) \(\dfrac{x^3+3x^2-4}{x^3-3x+2}\)
\(4x^2+8x-5\)