Tính: \(\left(6.\left(26\right)^{32}\right):\left(2.\left(29\right)^{20}\right)\)=
\(Tính:\)
\(\left[6\cdot\left(29\right)^{32}\right]:\left[2\cdot\left(29\right)^{20}\right]=.......\)
1,0614....... mà trên olympic lại nói đáp số là 2523
chứng minh cho biểu thức
\(\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right).....\left(10^6+20^3\right)}=0\)\(0\)
\(5^6-25^3=\left(5^2\right)^3-25^3=25^3-25^3=0\)
\(\Rightarrow\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right)\left(4^6-26^3\right)\left(5^6-25^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right)\left(4^6+26^3\right)\left(5^6+25^3\right).....\left(10^6+20^3\right)}=0\)
Tính hợp lí
a) \(\left(4\frac{5}{37}-3\frac{4}{5}+8\frac{15}{29}\right)-\left(3\frac{5}{37}-6\frac{14}{29}\right)\)
b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right):\left(\frac{11}{20}-\frac{26}{45}\right)\)
Tính nhanh:\(\left(32^2-1^2\right)+\left(34^2-3^2\right)+\left(36^2-5^2\right)+...+\left(56^2-25^2\right)+\left(58^2-27^2\right)+\left(60^2-29^2\right)\)
Bạn dựa vào công thức
a2 - n2 = (a + n)(a - n)
a)\(\left(1-\frac{2}{5}\right)^2+\left|\frac{-3}{5}\right|+\frac{-7}{10}\)
b)\(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}\)
c)\(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
tìm \(x\) biết:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
hay x=-2
Tính các tích sau:
\(a = \left( { - 2} \right).\left( { - 3} \right)\)
\(b = \left( { - 15} \right).\left( { - 6} \right)\)
\(c = \left( { + 3} \right).\left( { + 2} \right)\)
\(d = \left( { - 10} \right).\left( { - 20} \right)\)
\(a = \left( { - 2} \right).\left( { - 3} \right) = 2.3 = 6\)
\(b = \left( { - 15} \right).\left( { - 6} \right) = 15.6 = 90\)
\(c = \left( { + 3} \right).\left( { + 2} \right) = 3.2 = 6\)
\(d = \left( { - 10} \right).\left( { - 20} \right) = 10.20 = 200\).
Thực hiện phép tính: \(\left( { - 2} \right).29 + \left( { - 2} \right).\left( { - 99} \right)\)\( + \left( { - 2} \right).\left( { - 30} \right)\)
\(\left( { - 2} \right).29 + \left( { - 2} \right).\left( { - 99} \right)\)\( + \left( { - 2} \right).\left( { - 30} \right)\)\( = \left( { - 2} \right)\left( {29 - 99 - 30} \right)\)\( = \left( { - 2} \right).\left( { - 100} \right) = 200\)
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)