2) Cho số thực alpha <= 1 . Rút gọn biểu thức P= sqrt 15 2 - sqrt 10. (a - 1) ^ 2 3 .
Cho \(\alpha ,\beta \) là hai số thực với \(\alpha < \beta \). Khẳng định nào sau đây đúng?
A. \({\left( {0,3} \right)^\alpha } < {\left( {0,3} \right)^\beta }\).
B. \({\pi ^\alpha } \ge {\pi ^\beta }\).
C. \({\left( {\sqrt 2 } \right)^\alpha } < {\left( {\sqrt 2 } \right)^\beta }\).
D. \({\left( {\frac{1}{2}} \right)^\beta } > {\left( {\frac{1}{2}} \right)^\alpha }\).
Ta có:
A. \(\alpha< \beta\)
\(\Rightarrow\left(0,3\right)^{\alpha}>\left(0,3\right)^{\beta}\)
Sai
B. \(\alpha< \beta\)
\(\Rightarrow\pi^{\alpha}< \pi^{\beta}\)
Sai
C. \(\alpha< \beta\)
\(\Rightarrow\left(\sqrt{2}\right)^{\alpha}< \left(\sqrt{2}\right)^{\beta}\)
Đúng
D. \(\alpha< \beta\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{\alpha}>\left(\dfrac{1}{2}\right)^{\beta}\)
Sai
⇒ Chọn C
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=3α, AC=4α, với α Là số thực dương.
1)Tính AH theo α
2) tính tan ∠ABC
Theo định lý py - ta - go ta có :
\(BC=\sqrt{\left(3a\right)^2+\left(4a\right)^2}=\sqrt{25a^2}=5a\)
Theo hệ thức lượng ta có :
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3a.4a}{5a}=\dfrac{12a^2}{5a}=\dfrac{12}{5}a\)
Theo tỉ số lượng giác :
\(\tan ABC=\dfrac{AC}{AB}=\dfrac{4a}{3a}=\dfrac{4}{3}\)
Tìm tất cả các cặp số thực (a,b) sao cho đa thức \(p\left(x\right)=x^3+ã^2-ã+b\)có 3 nghiệm thực \(\alpha;\beta;\delta\)(không nhất thiết phân biệt)\(\in\)(0,2) và thỏa mãn \(\frac{\alpha^2}{\alpha^2-\alpha+1}+\frac{\beta^2}{\beta^2-\beta+1}+\frac{\delta^2}{\delta^2-\delta+1}=3\)
Cho 2 điểm A,B và 2 số thực \(\alpha,\beta\) sao cho \(\alpha+\beta\) \(\ne0\)
chứng minh rằng tồn tại duy nhất điểm I sao cho \(\alpha\overrightarrow{IA}+\beta\overrightarrow{IB}=\overrightarrow{O}\)
Cho a,b là các số thực và \(0^o< \alpha< 90^o\). CMR: \(-\sqrt{a^2+b^2}\le a.\sin\alpha\le\sqrt{a^2+b^2}\)
mình nghĩ nên sửa đề là \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)
với a,b,x,y là số thực ta luôn có \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ay-bx\right)^2\)
từ đẳng thức này ta suy ra \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
dấu "=" xảy ra khi \(\left(ax-by\right)^2=0\)
trở lại bài toán ta luôn có \(\left(a\cos\alpha+b\sin\alpha\right)^2\le\left(a^2+b^2\right)\left(\cos^2\alpha+\sin^2\alpha\right)=a^2+b^2\)
từ đó ta có \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)
b) Cho a, b là các số thực và \(o^o< a< 90^o\). CMR: \(-\sqrt{a^2+b^2}< a.cos_{\alpha}+b.sin_{\alpha}< \sqrt{a^2+b^2}\)
\(\left(a.cos\alpha+b.sin\alpha\right)^2\le\left(a^2+b^2\right)\left(sin^2a+cos^2a\right)=a^2+b^2\)
\(\Rightarrow-\sqrt{a^2+b^2}\le a.cos\alpha+b.sin\alpha\le\sqrt{a^2+b^2}\)
Với mọi số thực \(\alpha\)ta có \(\sin\left(\frac{9\pi}{2}+\alpha\right)=?\)
\(sin\left(\frac{9\pi}{2}+\alpha\right)=sin\left(4\pi+\frac{\pi}{2}+\alpha\right)=sin\left(\frac{\pi}{2}+\alpha\right)=cos\alpha\)
1)cho tan alpha=2/3.Tính các tỉ số lược giác 4) cho Sin alpha+ Có alpha= căn . Tính các tỉ số lượng giác 5) cho Tan alpha =2. Tính P=
1) \(tan\alpha=\dfrac{2}{3}\)
Mà: \(tan\alpha\cdot cot\alpha=1\)
\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\dfrac{2}{3}}=\dfrac{3}{2}\)
Và: \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos^2\alpha=\dfrac{1}{1+tan^2\alpha}\)
\(\Rightarrow cos\alpha=\sqrt{\dfrac{1}{1+tan^2\alpha}}=\sqrt{\dfrac{1}{1+\left(\dfrac{2}{3}\right)^2}}=\dfrac{3\sqrt{13}}{13}\)
Lại có:
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(\Rightarrow sin\alpha=tan\alpha\cdot cos\alpha=\dfrac{2}{3}\cdot\dfrac{3\sqrt{13}}{13}=\dfrac{2\sqrt{13}}{13}\)
\(Cm:x_1< \alpha< \beta< x_2\Leftrightarrow\left\{{}\begin{matrix}a.f\left(\alpha\right)< 0\\a.f\left(\beta\right)< 0\end{matrix}\right.\)
Cho các số thực \(\alpha,\beta\)
và \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right)\)