Chung minh rằng: 1*3*5*...*(2n-1)/(n+1)(n+2)...*2n=1/2n
tìm n ∈ Z để 2n2 + 5n - 1 ⋮ 2n - 1
chứng minh rằng với mọi số nguyên n thì
a) n2(n+1) + 2n(n+1) ⋮ 6
b) (2n-1)3 - (2n-1) ⋮ 8
c) (n+7)2 - (n-5)2 ⋮ 24
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
chứng minh rằng
1, 1/n(n+1)=1/n-1/n+1
2, 2/n(n+1)(n+2)=1/n(n+1)-1/(n+1)(n+2)
3, 3/n(n+1)(n+2)(n+3)=1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)
4, 4/(2n-1)(2n+1)(2n+3)=1/(2n+1)(2n-1)-1/(2n+1)(2n+3)
5, m/n(n+m)=1/n-1/n+m
6, 2m/n(n+m)(n+2n)=1/n(n+m)-1/(n+m)(n+2n)
b1.Cho AB = 2CD .Chứng minh rằng ABCD chia hết cho 67
b2.chứng minh N.(n+1).(2n+1) chia hết cho 2 và 3
b3. chứng minh rằng
a.4n - 5 chia hết cho 2n - 1
b.2.(2n - 1) -3 chia hết cho 2n -1
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
Chứng minh rằng: \(5^{2n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}=2^n\left(5^{2n-1}.10+9.6^{n-1}\right)\)
Với \(n\ge1\)
Bài 1
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 2
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 3
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
chứng minh rằng: 1^3 + 3^3 + 5^3 +...+ (2n+1)^3 = (n + 1)^2 x (2n^2 + 4n + 1)
seo mầy stupid như dậy | |
đồ bú Thảo | |
gửi câu hỏi hơi lâu |
chung minh
3n+1 chia het cho 2n+3
n^2+5 chia het cho n+1
2n^2+2n chia het cho2n^2+2
(3n+1)\(⋮\)(2n+3)
=>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)
=> [6n+2-6n-9] \(⋮\)(2n+3)
=> -7 \(⋮\)(2n+3)
=>2n+3\(\in\)Ư(-7)={-1;-7;1;7}
Ta có bảng:
2n+3 | -1 | -7 | 1 | 7 |
n+3 | 7 | 1 | -7 | -1 |
n | 4 | -2 | -10 | -4 |
Vậy n\(\in\){4;-2;-10;-4}
(n2 +5)\(⋮\)(n+1)
=>[(n2 +5)-n(n+1)]\(⋮\)(n+1)
=>[n2+5-n2-1] \(⋮\)(n+1)
=> 4 \(⋮\)(n+1)
=>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng:
n+1 | -1 | -2 | -4 | 1 | 2 | 4 |
n | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy n={-2;-3;-4;0;1;3}
Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!