Ta có:
\(1.3.5...\left(2n-1\right)=\frac{1.3.5...\left(2n-1\right).2.4.6....2n}{2.4.6...2n}\)
\(=\frac{1.2.3....2n}{1.2.2.2.3.2...n.2}=\frac{1.2.3...2n}{2^n\left(1.2.3...n\right)}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n}\)
Từ đây ta có:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\)