giải phương trình
\(\dfrac{36}{x+6}\) + \(\dfrac{36}{x-6}\) = 4,5
giải phương trình
\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\)
\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)
\(\Leftrightarrow9x^2-144x-324=0\)
\(\Leftrightarrow x^2-16x-36=0\)
=>(x-18)(x+2)=0
=>x=18 hoặc x=-2
ĐKXĐ:\(x\ne\pm6\)
\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)
giải các phương trình sau
1, \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)
2, \(\dfrac{1}{x-6}-\dfrac{2}{6+x}=\dfrac{3x+6}{x^2-36}\)
1: Ta có: \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)
Suy ra: \(x^2+4x+4+2x-4=x^2\)
\(\Leftrightarrow6x=0\)
hay \(x=0\left(nhận\right)\)
2: Ta có: \(\dfrac{1}{x-6}-\dfrac{2}{x+6}=\dfrac{3x+6}{x^2-36}\)
Suy ra: \(x+6-2x+12=3x+6\)
\(\Leftrightarrow-x-3x=6-18=-12\)
hay \(x=3\left(nhận\right)\)
Lời giải:
1. ĐKXĐ: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{(x+2)^2+2(x-2)}{(x-2)(x+2)}=\frac{x^2}{x^2-4}\)
\(\Leftrightarrow \frac{x^2+6x}{x^2-4}=\frac{x^2}{x^2-4}\)
\(\Rightarrow x^2+6x=x^2\Leftrightarrow x=0\) (tm)
2. ĐKXĐ: $x\neq \pm 6$
PT \(\Leftrightarrow \frac{6+x-2(x-6)}{(x-6)(6+x)}=\frac{3x+6}{x^2-36}\)
\(\Leftrightarrow \frac{18-x}{x^2-36}=\frac{3x+6}{x^2-36}\)
\(\Rightarrow 18-x=3x+6\Leftrightarrow 12=4x\Leftrightarrow x=3\) (tm)
1) \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+2}{x-2}+\dfrac{2}{x+2}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2\left(x-2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{x^2+2x2+2^2+2x-4-x^2}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{x^2-x^2+4x+2x+4-4}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow\dfrac{6x}{\left(x-2\right)\left(x+2\right)}\)=0
\(\Leftrightarrow6x=0\)
\(\Rightarrow x=0\)
2) \(\dfrac{1}{x-6}-\dfrac{2}{6+x}=\dfrac{3x+6}{x^2-36}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{2}{x+6}-\dfrac{\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{1\left(x+6\right)-2\left(x-6\right)-\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{x+6-2x+12-3x-6}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{x-2x-3x+6-6+12}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow\dfrac{-4x+12}{\left(x-6\right)\left(x+6\right)}\)=0
\(\Leftrightarrow-4x+12=0\)
\(\Leftrightarrow-4x=12\)
\(\Rightarrow x=3\)
a) giải phương trình: 8x-3=5x+12
b) giải bất phương trình sau và biểu diễn tập hợp nghiệm trên trục số: \(\dfrac{8-11x}{4}\)< 13
c) Chứng minh rằng: (\(\dfrac{x}{x^2-36}\)- \(\dfrac{x-6}{x^2+6x}\)): \(\dfrac{2x-6}{x^2+6x}\)+ \(\dfrac{x}{6-x}\)= 1
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
giải phương trình:\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36x-216+36x+216=4,5x^2-162\)
( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)
\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(4,5x^2+72x-162=0\)
\(4,5x^2-9x+81x-162=0\)
\(4,5\left(x-2\right)+81\left(x-2\right)=0\)
\(\left(x-2\right)\left(4,5x-81\right)=0\)
\(\left(x-2\right)4,5\left(x-18\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)
giải phương trình sau :
\(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2\dfrac{x^2+36}{x^2-36}\)
Giải phương trình:
\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\)
\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\) ( x # 0 ; x # 6)
⇔ \(\dfrac{90\left(x-6\right)-36x}{x\left(x-6\right)}=\dfrac{2x\left(x-6\right)}{x\left(x-6\right)}\)
⇔ 90x - 540 - 36x = 2x2 - 12x
⇔-2x2 + 66x - 540 = 0
⇔ -2( x2 - 33x +270 ) = 0
⇔ x2 - 18x - 15x + 270 = 0
⇔ x( x - 18) - 15( x - 18) = 0
⇔ ( x - 18)( x - 15) = 0
⇔ x = 18 ( TM) hoac x = 15 ( TM)
KL........
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
3.
ĐKXĐ: \(x\ge-1\)
\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Giải phương trình:
a) \(\dfrac{3x-2}{x^2-12x+20}-\dfrac{4x+3}{x^2+6x-16}=\dfrac{7x+11}{x^2-2x-80}\)
b) \(\dfrac{2x-5}{x^2+5x-36}-\dfrac{x-6}{x^2+3x-28}=\dfrac{x+8}{x^2+16x+63}\)
a: \(\Leftrightarrow\dfrac{3x-2}{\left(x-2\right)\left(x-10\right)}-\dfrac{4x+3}{\left(x+8\right)\left(x-2\right)}=\dfrac{8x+11}{\left(x-10\right)\left(x+8\right)}\)
=>(3x-2)(x+8)-(4x+3)(x-10)=(8x+11)(x-2)
=>3x^2+24x-2x-16-4x^2+40x-3x+30=8x^2-16x+11x-22
=>-x^2+59x+14-8x^2+5x+22=0
=>-9x^2+54x+36=0
=>x^2-6x-4=0
=>\(x=3\pm\sqrt{13}\)
b: \(\Leftrightarrow\dfrac{2x-5}{\left(x+9\right)\left(x-4\right)}-\dfrac{x-6}{\left(x+7\right)\left(x-4\right)}=\dfrac{x+8}{\left(x+9\right)\left(x+7\right)}\)
=>(2x-5)(x+7)-(x-6)(x+9)=(x+8)(x-4)
=>2x^2+14x-5x-35-x^2-9x+6x+54=x^2+4x-32
=>x^2+6x+19=x^2+4x-32
=>2x=-51
=>x=-51/2
Giải phương trình :
( x + \(\dfrac{1}{x}\))\(^2\) - 4,5( x + \(\dfrac{1}{x}\)) +5 = 0