\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)
\(\Leftrightarrow9x^2-144x-324=0\)
\(\Leftrightarrow x^2-16x-36=0\)
=>(x-18)(x+2)=0
=>x=18 hoặc x=-2
ĐKXĐ:\(x\ne\pm6\)
\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)