480:[75+(7^2-8. 3) :5] +108^0
480 : [ 75 + 7 mũ 2 - 8. 3 : 5 ] + 2021 mũ 0
\(480:\left(75+7^2-8.3:5\right)+2021^0\)
\(=480:\left(75+49-\dfrac{24}{5}\right)+1\)
\(=480:\left(124-\dfrac{24}{5}\right)+1\)
\(=480:\dfrac{596}{5}+1\)
\(=\dfrac{600}{149}+1=\dfrac{749}{149}\)
câu 1thực hiện phép tính
a , 545.65+15.545-80.445
b , 480 : [ 75 + ( 7^2 - 8.3 ) :5 ] = 2021^0
HELP ME!!! GIÚP MÌNH VỚI CÁC MN ƠI
So sánh các phân số sau, lưu ý cần vận dụng cách nhanh nhất
75/100 và 7/8, 7/8 và 3/2, 60/108, 15/37 và 31/54, 0/16 và 0/21, 1965/1967 và 1973/1975
AI GIẢI GIÚP MÌNH VỚI Ạ
\(\frac{75}{100}=\frac{3}{4}=\frac{6}{8}< \frac{7}{8}\)
\(\frac{7}{8}< 1< \frac{3}{2}\)
\(\frac{60}{108}=\frac{5}{9}=\frac{15}{27}>\frac{15}{37}\)
\(\frac{15}{37}=\frac{30}{74}< \frac{31}{74}< \frac{31}{54}\)
\(\frac{0}{16}=\frac{0}{21}\)
Xét \(1-\frac{1965}{1967}=\frac{2}{1967}>\frac{2}{1975}=1-\frac{1973}{1975}\Rightarrow\frac{1965}{1967}< \frac{1973}{1975}\)
rút gọn biểu thức chứa căn số học
a)-√20+3√45-6√80-1/5√125
b)2√3-√75+2√12-√147
c)3/2√12+7/5√75-9/10√300+11/6√108
\(a,=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
\(b,=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}=-6\sqrt{3}\)
\(c,=3\sqrt{3}+7\sqrt{3}-9\sqrt{3}+11\sqrt{3}=12\sqrt{3}\)
a) Ta có: \(-\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{5}\sqrt{125}\)
\(=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{1}{5}\cdot5\sqrt{5}\)
\(=-17\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
b) Ta có: \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\)
\(=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\)
\(=-6\sqrt{3}\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
Tính:
1/ √432 - √363 + √48 - √75 + √108-√147
2/ 6√60 - 5√8 + 3√15 + 4√32 + 3√128 - 2√1250
\(1,\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=\sqrt{12^2.3}-\sqrt{11^2.3}+\sqrt{4^2.3}-\sqrt{5^2.3}+\sqrt{6^2.3}-\sqrt{7^2.3}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\sqrt{3}.\left(12-11+4-5+6-7\right)\)
\(=-\sqrt{3}\)
\(2,6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=6.2\sqrt{15}-5.2\sqrt{2}+3\sqrt{15}+4.4\sqrt{2}+3.8\sqrt{2}-2.25\sqrt{2}\)
\(=12\sqrt{15}+3\sqrt{15}-10\sqrt{2}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\sqrt{15}.\left(12+3\right)+\sqrt{2}.\left(-10+16+24-50\right)\)
\(=15\sqrt{15}-20\sqrt{2}\)
1/ \(\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\left(12-11+4-5+6-7\right)\sqrt{3}\)
\(=-\sqrt{3}\)
2/ \(6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=12\sqrt{15}-10\sqrt{2}+3\sqrt{15}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\left(12+3\right)\sqrt{15}+\left(-10+16+24-50\right)\sqrt{2}\)
\(=15\sqrt{15}-20\sqrt{2}\)
Tính:
a. \(5\sqrt{2}-2\sqrt{48}+6\sqrt{75}-\sqrt{108}\)
b.\(2\sqrt{147}-\dfrac{3}{32}\sqrt{192}+\dfrac{4}{18}\sqrt{243}-\dfrac{1}{10}\sqrt{300}\)
c. \(-\dfrac{1}{2}\sqrt{108}+\dfrac{1}{15}\sqrt{75}-\dfrac{1}{22}\sqrt{363}+\sqrt{12}\)
d. \(\dfrac{5}{8}\sqrt{48}-\dfrac{1}{33}\sqrt{363}+\dfrac{3}{14}\sqrt{147}-\dfrac{1}{4}\sqrt{192}\)
e. \(\dfrac{3}{2}\sqrt{12}+\dfrac{7}{5}\sqrt{75}-\dfrac{9}{10}\sqrt{300}+\dfrac{11}{6}\sqrt{108}\)
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)
480:[75+(7²-8.3):5]+2021⁰
=480:[75+(49-8.3):5]+1
=480:[75+(49-24):5]+1
=480:[75+25:5]+1
=480:[75+5]+1
=480:80+1
=6+1
=7
ko xem dc de ban oi :/
(-67)+125+(-33)+75
86.(-108)+86.9-86
23.(-16)-23.84+300
235-5[(5^3-3^3):14]
95-(129-74):5+2022^0
\(\left(-67\right)+125+\left(-33\right)+75\)
\(=\left[\left(-67\right)+\left(-33\right)\right]+\left(125+75\right)\)
\(=100+200=300\)
_______
\(86.\left(-108\right)+86.9-86\)
\(=86.\left[\left(-108\right)+9-1\right]\)
\(=86.\left(-100\right)=-8600\)
_______
\(23.\left(-16\right)-23.84+300\)
\(=23.\left[\left(-16\right)-84\right]+300\)
\(=23.\left(-100\right)+300\)
\(=-2300+300\)
\(=-2000\)
______
\(235-5\left[\left(5^3-3^3\right):14\right]\)
\(=235-5\left[\left(125-27\right):14\right]\)
\(=235-5\left[98:14\right]\)
\(=235-5.7\)
\(=235-35\)
\(=200\)
_______
\(95-\left(129-74\right):5+2022^0\)
\(=95-55:5+1\)
\(=95-11+1\)
\(=84+1=85\)
\(#NqHahh\)