Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Guyo
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 13:46

Do \(x^2+y^2=1\), đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(P=\left(3-sina\right)\left(3-cosa\right)=9-3\left(sina+cosa\right)+sina.cosa\)

Đặt \(sina+cosa=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sina.cosa\Rightarrow sina.cosa=\dfrac{t^2-1}{2}\)

\(P=9-3t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\)

Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(f'\left(t\right)=t-3=0\Rightarrow t=3\notin\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{19+6\sqrt{2}}{2}\) ; \(f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) 

\(\Rightarrow P_{min}=f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) khi \(t=\sqrt{2}\) 

Khôi Trần
Xem chi tiết
cao son
Xem chi tiết
jeon kookie
Xem chi tiết
Thanh Tùng DZ
6 tháng 3 2020 lúc 17:21

Áp dụng BĐT Cô-si, ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)

Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)

\(\Rightarrow P\ge3\)

Vậy GTNN của P là 3 khi x = y = z = 1

Khách vãng lai đã xóa
Nguyễn Ý Nhi
1 tháng 9 2021 lúc 9:35

Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )

\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2021 lúc 18:53

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel kết hợp bất đẳng thức phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)ta có :

\(P\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 6:40

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2019 lúc 10:17

Toan Phạm
Xem chi tiết
tth_new
23 tháng 9 2019 lúc 10:48

\(P=\left(x+y\right)^3-3xy\left(x+y\right)+2x^2y^2\)

\(=2x^2y^2-3xy+1=2t^2-3t+\frac{5}{8}+\frac{3}{8}\) (đặt t = xy \(\Rightarrow t\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\))

\(=\frac{1}{8}\left(4t-1\right)\left(4t-5\right)+\frac{3}{8}\ge\frac{3}{8}\)

Do đó \(P\ge\frac{3}{8}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\t=\frac{1}{4}\\x=y\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

True?

Q.Ng~
1 tháng 4 2020 lúc 21:14

Em không hiểu ctv giải dòng suy ra T ạ

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
1 tháng 4 2020 lúc 21:17

๖ۣۜBFK_Quân Nguyễn~ đó là BĐT phụ nhé bạn:

\(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow4xy\le\left(x+y\right)^2\Leftrightarrow\left(x-y\right)^2\ge0\) ( đúng )

Đó,mình chứng minh đó nhé !

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 10:30