Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2019 lúc 17:37

HS tự chứng minh

Vũ Ngọc Mai
Xem chi tiết
Thảo Karry
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Ngọc Ý
Xem chi tiết
Nguyễn Ngọc Ý
4 tháng 3 2022 lúc 16:20

Ét ô étkhocroihuhu

vũ trịnh như trang
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 9 2021 lúc 18:55

Ta có \(\widehat{OAC}=\widehat{O'AD}\left(đối.đỉnh\right)\)

Mặt khác \(\Delta OAC.cân.tại.O\left(OA=OC\right)\)

Nên \(\widehat{OAC}=\widehat{OCA}\)

Tương tự \(\Delta O'AD.cân.tại.O'\left(O'A=O'D\right)\)

Nên \(\widehat{O'AD}=\widehat{O'DA}\)

\(\Rightarrow\widehat{OCA}=\widehat{ADO'}\)

Mà 2 góc này ở vị trí so le trong

Vậy \(OC//O'D\)

Thầy Tùng Dương
Xem chi tiết
Nhật Nam
22 tháng 8 2021 lúc 16:37

a) AD và AF cách đều tâm O nên chúng bằng nhau.

b) Kẻ OI  MN, OK  PQ.

Trong đường tròn nhỏ, ta có: MN > PQ  OI < OK.

(Dây lớn hơn thì gần tâm hơn)

Trong đường tròn lớn, OI < OK  AE > AH.

(Dây gần tâm hơn thì lớn hơn)

c) A, B, O, C cách đều trung điểm AO.

d) OI<OK⇒OIOA<OKOA

Khách vãng lai đã xóa
Phương Vy
22 tháng 8 2021 lúc 20:45

a) AD và AF cách đều tâm O nên chúng bằng nhau.

b) Kẻ OI \bot MN, OK \bot PQ.

Trong đường tròn nhỏ, ta có: MN > PQ \Rightarrow OI < OK.

(Dây lớn hơn thì gần tâm hơn)

Trong đường tròn lớn, OI < OK \Rightarrow AE > AH.

(Dây gần tâm hơn thì lớn hơn)

c) A, B, O, C cách đều trung điểm AO.

d) OI < OK\Rightarrow\frac{OI}{OA}<\frac{OK}{OA}

\Rightarrow \sin{\widehat{OAI}}< \sin{\widehat{OAK}} \Rightarrow \widehat{OAI}<\widehat{OAK} \Rightarrow \widehat{OAE}<\widehat{OAH}.

Khách vãng lai đã xóa
Trần Văn Mừng
18 tháng 11 2021 lúc 21:06

a) AD và AF cách đều tâm O nên chúng bằng nhau.

b) Kẻ OI  MN, OK  PQ.

Trong đường tròn nhỏ, ta có: MN > PQ  OI < OK.

(Dây lớn hơn thì gần tâm hơn)

Trong đường tròn lớn, OI < OK  AE > AH.

(Dây gần tâm hơn thì lớn hơn)

c) A, B, O, C cách đều trung điểm AO.

d) OI<OK⇒OIOA<OKOA

 

 

Khách vãng lai đã xóa
Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 8:52

a: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: IO là phân giác của góc DIA

=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IO' là phân giác của góc AIE

=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)

Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)

=>\(2\cdot\widehat{OIO'}=180^0\)

=>\(\widehat{OIO'}=90^0\)

b: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: IA=IE

ID=IA

Do đó: ID=IE

=>I là trung điểm của DE

=>I là tâm đường tròn đường kính DE

Xét ΔDAE có

AI là bán kính

\(AI=\dfrac{DE}{2}\)

Do đó: ΔADE vuông tại A

=>A nằm trên (I)

Xét (I) có

IA là bán kính

O'O\(\perp\)IA tại A

Do đó: OO' là tiếp tuyến của (I)

=>O'O là tiếp tuyến của đường tròn đường kính DE

 

Ngọc Nguyễn Ánh
Xem chi tiết