cho hình vẽ bên . Biết AD//BE. chứng minh rằng EBC=DAC+ACB .
Cho △ABC, AD và BE là các đường trung tuyến, \(\widehat{DAC}=\widehat{EBC}=30^0\).
Chứng minh rằng △ABC đều.
-Khó quá giúp mình với ;-;
Cho tam giác ABC , đường cao AD ; BE
a) CMR : tam giác EBC đồng dạng với tam giác DAC
b) tam giác CDE đồng dạng với tam giác CAB
c) Chứng minh góc AFE = góc ACB
a, xét tam giác EBC và tam giác DAC có :
góc C chung
góc ADC = góc BEC = 90
=> tam giác EBC ~ tam giác DAC (g - g)
Bài tập về nhà
Bài 5: Cho tam giác ABC có các đường trung tuyến AD và BE, \(\widehat{DAC}=\widehat{EBC}=30^0\). Chứng minh rằng tam giác ABC đều.
từ đề suy ra:
\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)
\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)
áp dụng đl tổng 3 góc trong của một tam giác :
\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)
\(\widehat{ACB}+60^o+60^o=180^o\)
\(\Rightarrow\widehat{ACB}=60^o\)
Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)
suy ra : ABC là tam giác đều(đpcm)
Cho hình vẽ biết:
A B ⊥ A C ; D A C ^ = 140 0 ; B ^ = 50 0 ; C ^ = 40 0
Chứng tỏ rằng :
a) AD//CF
b) AD//BE
D A B ^ = 360 0 − 140 0 + 90 0 = 130 0
a) D A C ^ + A C F ^ = 140 0 + 40 0 = 180 0
Suy ra AD//CF( vì có cặp góc trong cùng phía bù nhau).
b) D A B ^ + A B E ^ = 130 0 + 50 0 = 180 0
Suy ra AD//BE( vì có cặp góc trong cùng phía bù nhau)
Cho tam giác cân ABC ( AB = AC ). Vẽ 3 đường cao AD,BE,CF(D \(\in\) BC, E \(\in\) AC ,F \(\in\) AB).
a) Chứng minh tam giác DAC và tam giác EBC đồng dạng.
b) Cho BC = 6cm, AC = 9cm. Tính độ dài CE,
c) Chứng minh CE = BF, EF//BC.
a,Xét tam giác DAC và tam giác EBC ta có:
\(\widehat{BEC}=\widehat{ADC}=90^0\)
C chung
tam giác DAC đồng dạng tam giác EBC
b, AD là đường cao vừa là đường phân giác
BD = DC
DC = \(\dfrac{BC}{2}\) =\(\dfrac{6}{3}=2\)
Vì tam giác DAC đồng dạng tam giác EBC suy ra \(\dfrac{AC}{BC}=\dfrac{DC}{EC}\Leftrightarrow EC=\dfrac{DC.BC}{AC}=\dfrac{3.6}{9}=2\)
c, vì đường cao BE,CF nên \(\widehat{BEC}=\widehat{CFB}=90^o\)
Xét tam giác BEC và tam giác CFB có
BC chung
\(\widehat{CBA}=\widehat{BCA}\)
tam giác BEC = tam giác CFB ( cạnh huyền góc nhọn )
CE = BF ( đpcm )
Ta có : AB = AC , CE = BF
AB = BF + AF ; AC = CE + AE
suy ra AF = AE => tam giác AEF cân tại A
\(\widehat{ÀEF}=\dfrac{180^o-\widehat{A}}{2}\) ( 1 )
tam giác ABC cân tại A suy ra \(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) ( 2 )
TỪ ( 1 ) và ( 2 ) ta có \(\widehat{AEF}=\widehat{ACB}\)
suy ra EF//BC ( có cặp góc đồng vị bằng nhau )
a) Xét ΔDAC vuông tại D và ΔEBC vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔDAC∼ΔEBC(g-g)
Cho tam giác ABC cân tại A, vẽ ba đường cao AD, BE, CF
a) Chứng minh tam giác DAC đồng dạng tam giác EBC
b) Cho BC = 8 cm; AC = 6 cm, Tính độ dài CE,CF
c) Chứng minh: CE = BF và FE // BC.
Cho tam giác ABC có 3 góc nhọn (AB<AC), đường cao AD và BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I và K. Tia phân giác của góc EBC cắt AD, AC theo thứ tự M và N. Chứng minh tam giác MINK là hình thoi
a. Gọi giao điểm của AK và BN là Q
Ta có:
ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘
Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘
ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)
⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^
Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)
⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘
⇒ˆAQM=90∘⇒AQM^=90∘
Hay AK vuông góc với BN.
b. Theo câu a: AK vuông góc với BN tại Q
Mà BQ là phân giác của góc ˆIBKIBK^
Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B
Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.
Chứng minh tương tự: Q là trung điểm của MN
Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK
Vậy MINK là hình thoi.
Cho tam giác ABC có 3 góc nhọn (AB<AC), đường cao AD và BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I và K. Tia phân giác của góc EBC cắt AD, AC theo thứ tự M và N. Chứng minh tam giác MINK là hình thoi
Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I, K. Tia phân giác của góc EBC cắt AD, AC theo thứ tự tại M, N. a) Chứng minh AK vuông góc với BN. b) MINK là hình gì? Vì sao?
Bài 3. Cho hình vẽ bên. Chứng minh rằng a) ACB ACD b) AC là tia phân giác của góc BAD