(2x-1)2-2(x+5)(x-5)=13
Tìm số nguyên x, biết 13 ⋮ (2x + 3)
A. x ∈ {1; -1; 13; -13} B. x ∈ {1; 13}
C. x ∈ {-1; 5; -2; -8} D. x ∈ {1; 2; 5; 8}
Tìm x ∈ Z thỏa mãn; -1 < x < 2
A. x ∈ {0} B. x ∈ {-1;0;1;2} C. x ∈ {0;1} D. x ∈ {0;1;2}
Sắp xếp các số 0;-12; -4; 9; 234; -234 theo thứ tự giảm dần, chọn câu đúng?
A. 234; 0; 9; -4; -12; -234 B. -234; -4; 0; -12; 9; 234
C. -234; -12; -4; 0; 9; 234 D. 234; 9; 0; -4; -12; -234
Tìm x,biết :
a) 2x^2-7x+5=0
b) x(2x-5) - 4x+10=0
c) (x-5)(x+5) - x(x-2)=15
d) x^2(2x-3) - 12+8x=0
e) x(x - 1)+5x - 5=0
f) (2x-3)^2 - 4x(x - 1)=5
g) x(5 - 2x)+2x(x - 1)=13
h)2(x+5)(2x - 5)+(x - 1)(5 - 2x)=0
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
\(a,2x^2-7x+5=0\Leftrightarrow2x^2-2x-5x+5=0\Leftrightarrow2x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2,5\end{matrix}\right.\)\(b,x\left(2x-5\right)-4x+10=0\Rightarrow x\left(2x-5\right)-2\left(2x-5\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=2,5\end{matrix}\right.\)\(c,\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\Leftrightarrow x^2-25-x^2+2x-15=0\Leftrightarrow2x-40=0\Rightarrow2x=40\Rightarrow x=20\)\(d,x^2\left(2x-3\right)-12+8x=0\Rightarrow2x^3-3x^2-12+8x=0\Leftrightarrow2x^3+8x-3x^2-12=0\Leftrightarrow2x\left(x^2+4\right)-2\left(x^2+4\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+4\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\x^2+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\x^2=-4\end{matrix}\right.\Rightarrow x=1\)
a) 2x-1/11+2x-2/12+2x-3/13=2x+5/5+2x+6/4+2x+7/3
b) x-1/2016+x-2/2015+x-3/2014+x-4/2013+x-5/2012 -5=0
c) x+2017/2+x+2015/3+x+2013/4+x+2011/5+8=0
1)X-1/2-x+5/15=2x-13/6
2)2(x+1)-1=3-(1-2x)
3)(3x+5)(2x-7)=0
2, 2(x+1)-1=3-(1-2x)
2x+2-1=2-1+2x
2x-2x=2-1-2+1
0x=0
Vậy không tồn tại giá trị của x thỏa mãn đề bài
3, (3x+5)(2x-7)=0
\(\orbr{\begin{cases}3x+5=0\\2x-7=0\end{cases}}\)
\(\orbr{\begin{cases}3x=0-5=-5\\2x=0+7=7\end{cases}}\)
\(\orbr{\begin{cases}x=\left(-5\right):3\\x=7:2=3,5\end{cases}}\)Vô lí
Vậy x=3,5
BT: Tìm x
a) 2x.(x-3)-x(2x+1)-3.(x+5)=11
b) x.(x-1)-(x^2+3x-5)-2.(x+3)=7
c) 5x.(x-7)-(5x+1).x-(x+3).2=13
d) (2x^2-3x+5)-2x.(x-3)+(x-1).(-2)=10
a) \(2x\left(x-3\right)-x\left(2x+1\right)-3\left(x+5\right)=11\)
\(\Rightarrow2x^2-6x-2x^2-x-3x-15=11\)
\(\Rightarrow-10x=26\Rightarrow x=-2,6\)
Vậy ...........
b) \(x\left(x-1\right)-\left(x^2+3x-5\right)-2\left(x+3\right)=17\)
\(\Rightarrow x^2-x-x^2-3x+5-2x-6=17\)
\(\Rightarrow-6x=18\Rightarrow x=-3\)
c) \(5x\left(x-7\right)-\left(5x+1\right)x-\left(x+3\right)2=13\)
\(\Rightarrow5x^2-35x-5x^2-x-2x-6=13\)
\(\Rightarrow-38x=19\Rightarrow x=-\frac{1}{2}\)
d) \(\left(2x^2-3x+5\right)-2x\left(x-3\right)+\left(x-1\right)\left(-2\right)=10\)
\(\Rightarrow2x^2-3x+5-2x^2+6x-2x+2=10\)
\(\Rightarrow x=3\)
Bài 4: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 ; b) x(5 – 2x) + 2x(x – 1) = 13 ;
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 ; d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8 ;
e) 2(5x – 8) – 3(4x – 5) = 4(3x – 4) + 11; f) 2x(6x – 2x 2 ) + 3x 2 (x – 4) = 8.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(x=\dfrac{1}{2}\)
===========
b/ \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
\(\Leftrightarrow x=\dfrac{13}{3}\)
Vậy: \(x=\dfrac{13}{3}\)
==========
c/ \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
d/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=8\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
e/ \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\dfrac{2}{7}\)
Vậy: \(x=\dfrac{2}{7}\)
==========
f/ \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow-x^3=8\)
\(\Leftrightarrow x=-2\)
Vậy: \(x=-2\)
(x-2).(5-x)
(x-1) . (x^2 +1)
| 2x - 5 | = 13
| 7x + 3 | = 66
| 5x - 2 | < hoặc = 13
a. |x+ 2/5|- 2= -1/4
b. 1/5 + |x- 13/10| = 3/2
c. |3/4 - 1/2x| + 1/3 = 5/6
d. 7,5 -3 |5- 2x| = -4,5
đ. | x - 3,5| + | x - 1,3| = 0
e. |x- 2021| + | x- 2022| = 0
f. |x| + x = 1/3
g. |x- 2| = x
giúp mik với ạ, mik đang cần gấp
\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)
\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)
\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)
\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)
\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)
3/ Giải phương trình bằng cách đặt ẩn phụ:
1. x2-|x|-2=0
2. x2+2x+|x+1|-5=0
3. x2+2x-5|x+1|+5=0
4. x2-2x+5|x-1|+5=0
5. x2-4x+2|x-2|+1=0
6. 4x2-20x+4|2x-5|+13=0
a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)
b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)
d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)
Đặt \(\left|x-2\right|=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)
Đặt \(\left|2x-5\right|=t\ge0\)
\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)