Tính tổng sau 1+2+2^2+2^3+2^4+...+2^99+2^100
Tính tổng sau: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Tính nhanh tổng sau:
2/1×2+2/2×3+2/3×4+...+2/79×80+2/99×100
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}\)
\(=\frac{99}{50}\)
Đầu tiên đặt 2 ra
Đặt bt còn lại là ...
Tách 1/ 1×2=1-1/2; 1/2×3=1/2-1/3....1/99×100=1/99-1/100
=1/1-1/100
=...
\(\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+............+\frac{2}{79x80}+\frac{2}{99x100}\)
\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-..............+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\left(\frac{99}{100}\right)\)
\(=\frac{198}{100}\)
\(=\frac{99}{50}\)
Tính nhanh các tổng sau :
a)B= 1-2-3+4+5-6-7+8+......+97-98-99+100
b) C=2 mũ 100- 2 mũ 99 - 2 mũ 98 - ....- 2 mũ 2 -2 -1
a Ta có
B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100
= ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)
= 0 +0+... +0 (25 cs 0)
=0 x25=0
25 cs 0 là gì vậy ?
Tính tổng sau:
a) A=1^2-2^2+3^2-4^2+5^2-6^2+.....+99^2-100^2
A = (1-2).(1+2)+(3-4).(3+4)+(5-6).(5+6)+.....+(99-100).(99+100)
= -1.3-1.7-1.11-......-1.199
= -(3+7+11+....+99)
Trong dãy số 3;7;11;.....;99 có số số là : (99-3) : 4 + 1 = 25 (số)
=> A = -(3+99).25:2 = -1275
Tk mk nha
\(A=1^2-2^2+3^2-4^2+5^2-6^2+...+99^2-100^2\)
\(A=-3+\left(-7\right)+\left(-11\right)+...+\left(-199\right)\)
\(A=\frac{\left(-3+\left(-7\right)\right).50}{2}\)
\(A=-\frac{10.50}{2}\)
\(A=-250\)
Tính tổng sau : A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + ... + 99 - 100
B=1–2- 3+4+5-6-7+8+...+97-98-99+100
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
Bài 4: Tính tổng 1) 1 + (-2) + 3 + (-4) + . . . + 19 + (-20) 2) 1 – 2 + 3 – 4 + . . . + 99 – 100 3) 2 – 4 + 6 – 8 + . . . + 48 – 50 4) – 1 + 3 – 5 + 7 - . . . . + 97 – 99 5) 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
Tính tổng 100-(1+1/2+1/3+1/4+...+1/100)/1/2+2/3+3/4+....+99/100
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
Tính tổng sau đây một cách hợp lý
a,1-2+3-4+.....+99-100
b.1+2-3-4+5+6-......+97+98-99-100
a, 1-2+3-4+...+99-100
= (1-2)+(3-4)+...+(99-100)
= -1 + (-1) +...+ (-1)
= -1 x 50
= -50
b, 1+2-3-4+5+6-...+97+98-99-100
= (1+2-3-4) + (5+6-7-8) + ... + (97+98-99-100)
= -4 +( -4) + .... + (-4)
= -4 x 25
= -100