Chứng minh rằng : GTNN của I x - 2 I + I x - 1995 I là 1993.
1.Chứng minh rằng đa thức B(x) không có nghiệm, biết rằng: B(x)=x^2+5
2. Cho tam giác ABC vuông tại A ,đường phân giác BK(K €AC); kẻ KH vuông góc BC(H€BC), E là giao điểm của KH và AB.
Chứng minh: Tam giác ABC bằng tam giác HBKChứng minh: KB là đường trung trực của AHGọi I là trung điểm của EC. Chứng minh rằng: 3 điểm B,K,I thẳng hàng1. Ta có :
B(x)=x2+5 mà x2 luôn > hoặc = 0
và 5>0
=>x2+5 luôn > 0
Vậy đa thức B(x) không có nghiệm
Ta có : B ( x ) = x^2 + 5
Mà x^2 lớn hơn hoặc bằng 0
5 > 0
Suy ra x^2 + 5 > 0
Suy ra đa thức B ( x ) không có nghiệm
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng .
Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)
\(=\dfrac{9}{2}-3=1,5\)
Dấu " = " khi a = b = c
Bài 5:
Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)
Dấu " = " khi a = b = c = d = 1
7) VP phải là abc nha
\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế của 3 BĐT trên
\(\left[VT\right]^2\le VP^2\)
Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
2) Giả sử \(a\le0\):
Nếu a=0 thì trái với abc>0
Nếu a<0: Do a+b+c>0 nên b+c>0. Do abc>0 nên bc<0
Suy ra a(b+c)+bc<0, mâu thuẫn với ab+bc+ca>0
Vậy a>0
Tương tự ta có b>0;c>0
Các số thực x, y, z thỏa mãn x2 + y2 + z2 - 2 x + 4 y - 6 z = 15 Chứng minh rằng: |2 x - 3 y + 4 z - 20| ≤ 29
\(x^2+y^2+z^2-2x+4y-6z=15\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\)
Đặt \(P=\left|2x-3y+4z-20\right|=\left|2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right|\)
\(P^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\)
\(P^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\)
\(\Rightarrow P\le29\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\\\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}\end{matrix}\right.\)
1)Chứng minh rằng
N= 3-10x^3 - 6xy- 57hr+ 96rq chia hết cho x^2yhrq
2) Chứng minh rằng
P = 369^3 - 219^3 chia hết cho 1350
Ta có:\(B=3-10x^2-4xy-4y^2\)
\(=3-9x^2-x^2-4xy-4y^2\)
\(=3-9x^2-\left(x^2+4xy+4y^2\right)\)
\(=3-\left(3x\right)^2-\left(x+2y\right)^2\)
Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)
\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)
Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)
tìm GTNN của bt : I x - 1 I + 2020 I x - 2 I + I x - 3 I
`|x-1|+2020|x-2|+|x-3|`
`=|x-1|+|3-x|+2020|x-2|`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x-1|+|3-x|>=|x-1+3-x|=2`
Mà `|x-2|>=0=>2020|x-2|>=0`
`=>|x-1|+2020|x-2|+|x-3|>=2`
Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$
`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$
`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$
`<=>x=2`
Bài 6: Chứng minh rằng:
a)x2-x+1>0 với mọi số thực x
b)-x2+2x-4<0 với mọi số thực x
a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\)(đpcm)
b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)
hay \(-x^2+2x-4< 0\forall x\)(đpcm)
cho tứ giác ABCD có M N P X I lần lượt là trung điểm của AB BC CD DA XN . CHỨNG MINH RẰNG I là trung điểm của MP
Xét ΔABD có
M là trung điểm của AB
X là trung điểm của AD
Do đó: MX là đường trung bình của ΔABD
Suy ra: MX//BD và \(MX=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra XM//NP và XM=NP
Xét tứ giác XMNP có
XM//NP
XM=NP
Do đó: XMNP là hình bình hành
Suy ra: Hai đường chéo XN và MP cắt nhau tại trung điểm của mỗi đường
hay I là trung điểm của MP
Cho biểu thức I=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a, Rút gọn biểu thức I
b, Tìm x để I=2
c, Giả sử x>1. Chứng minh rằng I-\(|I|\) =0
d, Tìm giá trị nhỏ nhất của I
TÌm GTNN của biểu thức : C = I x + 2 I + I x - 4 I + 2020
`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`
C=|x+2|+|x−4|+2020C=|x+2|+|x-4|+2020
=|x+2|+|4−x|+2020=|x+2|+|4-x|+2020
Áp dụng BĐT |A|+|B|≥|A+B||A|+|B|≥|A+B|
⇒|x+2|+|4−x|≥|x+2+4−x|=6⇒|x+2|+|4-x|≥|x+2+4-x|=6
⇒C≥2020+6=2026⇒C≥2020+6=2026
Dấu "=" xảy ra khi (x+2)(4−x)≥0⇔(x+2)(x−4)≤0⇔−2≤x≤4(x+2)(4-x)≥0⇔(x+2)(x-4)≤0⇔-2≤x≤4