CM: không có số nguyên tố p thỏa mãn 8p+1 và 8p-1 đều là số nguyên tố
Có hay không số nguyên tố P thỏa mãn 8P-1;8P+1 cùng là các số nguyên tố
8p - 1 và 8p + 1 không cùng là số nguyên tố (loại)
Với p = 3 thì 8p - 1 = 8.3 - 1 = 23; 8p + 1 = 8.3 + 1 = 258p - 1 và 8p + 1 không cùng là số nguyên tố (loại)
Với p > 3 do p nguyên tố nên \(p⋮̸3\)Xét 3 số tự nhiên liên tiếp 8p - 1; 8p; 8p + 1, trong 3 số này có 1 số chia hết cho 3
Mà \(8p⋮̸3\) do \(p⋮̸3\) nên trong 2 số 8p - 1; 8p + 1 có 1 số chia hết cho 3, không cùng là số nguyên tố (loại)
Vậy không tồn tại số nguyên tố p thỏa mãn đề bài
p là 1 số nguyên tố.
CM 8p-1 và 8p+1 không đòng thời là số nguyên tố.
a) Tìm số nguyên tố p,q sao cho 2p+q và pq + 1 đều là số nguyên tố
b) CHo p là số nguyên tố chứng tỏ 8p+1 và 8p-1 không thể đồng thời là số nguyên tố
CM 8p - 1 và 8p + 1 không cùng là số nguyên tố hay hợp số
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Tìm số nguyên tố P sao cho 8P-1 và 8P+5 đều là số nguyên tố
Bài này cũng tương tự Chào anh hung t, đúng là 3 số anh xét là gần nhất...
Hic ;(( sao nó lại không nằm trong suy nghĩ đầu tiên???
-------------------
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Đáng nhẽ đề bài là : TÌm SNT P sao cho 8P-1 và 8P+5 đều là SNT
Cho p là một số nguyên tố CM 2 số 8p-1 và 8p+1 ko đồng thời là số nguyên tố
Câu 1 : Tổng của hai số nguyên tố có thể bằng 2003 được không ?
Câu 2 : Nếu p là số nguyên tố và 1 trong 2 số 8p+1 và 8p-1 cũng là số nguyên tố thì số còn lại là số nguyên tố hay hợp số ?
Câu 2 :
8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
tick đúng cho mik nha ! **** !!!
Cho p là một số nguyên tố . Chứng tỏ
Hai số 8p-1 và 8p+1 không đồng thời là số nguyên tố
Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố
Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)
- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố
- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố
Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố
CMR nếu p là số nguyên tố thì 8p-1 và 8p+1 không đồng thời là các số nguyên tố.