giả sử p=2 thì ta có: 8p+1=8x2+1=17
8p-1=8x2-1=15(loại)
giả sử p=3 thì ta có: 8p+1=8x3+1=25(loại)
nếu p có dạng 3k+1 thì ta có: 8p+1=8x(3k+1)+1=24k+8+1=24k+9(loại)
(vì 24 chia hết cho 3 và 9chia hết cho 3)
nếu p có dạng 3k+2 thì ta có : 8p+1=8x(3k+2)+1=24k+16+1=24k+17
8p-1=8x(3k+2)-1=24k+16-1=24k+15(loại)(vì 24 và 15 cung chia hết cho3)
vậy ko có số nguyên tố p thỏa mãn 8p+1 và 8p-1 đều là số nguyên tố(ĐPCM)