cho A=1+3+32+34+..............+32012và B=32013:2 . Tính B-A
Bài 1: cho A = 1 + 21 + 22 + 23 + ...... + 22007
a)Tính 2.A
b)Chứng minh A = 22006 - 1
Bài 2: cho A = 1 + 3 + 31 + 32 + 33 + 34 + 35 + 36 + 37
a)Tính 2.A
b)Chứng minh A = (38 - 1) : 2
Bài 3: cho B = 1 + 3 + 32 + ..... + 32006
a)Tính 3.B
b)Chứng minh B = (32007 - 1) : 2
Bài 4: cho C = 1 + 4 + 42 + 43 + 45 + 46
a)Tính 4.C
b)Chứng minh C = (47 - 1) : 3
Bài 5: Tính tổng
S = 1+ 2+ 22+ 23 + ...... + 22017
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
Cho:A=1+3+32+33+34+...+32022
B=32023:2
Tính B-A
A = 1 + 3 + 32 + 33 + 34 + ... + 32022
3A = 3 + 32 + 33 + ... + 34 + ... + 32022 + 32023
3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)
2A = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022
2A = (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)
2A = 32023 - 1
A = \(\dfrac{3^{2023}-1}{2}\)
A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)
B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))
B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)
B - A = \(\dfrac{1}{2}\)
\(\frac{a1}{a2}\)= \(\frac{a2}{a3}\) =...=\(\frac{a2013}{a1}\) tính M=\(\frac{a^31+a^32+..+a^32013}{\left(a1+a2+a3+..+2013\right)^3}\)
giúp mình vs mình đang cần gấp
Cho tổng A=1+32+34+36+...+32008. Tính giá trị biểu thức: B= 8A-32010
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
Theo đề bài ra, ta có :
A=1+3^2+3^4+3^6+....+3^2008
9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010
9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)
8A = -1+3^2010
8A - 3^2010 = (-1)
@Nae
a) Không tính kết quả hãy so sánh : A=2019.2021 và B=20202
b) Cho biết A+4B ⋮ 13,(a,bϵN).Chứng minh rằng 10A+B ⋮ 13
c) Tìm số tự nhiên n,sao cho 5n+1⋮7
d) Cho C=3+32+33+34+...+3100 chứng tỏ C ⋮ 40
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuô Bài 3 :( 1,5 đ)a) Tìm x, biết :( 4x -5)( 6 -x)+ (2x -3 )2= 0 b) Rút gọn biểu thức :A = 8. ( 32+ 1)(34+ 1 )(38+ 1)Bài 4 : (2,0 đ) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF . ng tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC .a) Chứng minh tứgiác ADHE là hình chữnhật .b) Gọi F là trung điểm của của BH . Chứng minh DE ⊥DF .
yggucbsgfuyvfbsudy
✿Bài 1: Tìm a,b\(\inℕ^∗\), biết:
a) a.b + b.19 = 713 b) a.b - 10.b = 650
Bài 2:
a) Viết tổng sau thành một tích: 34 + 35 + 36 + 37
b) Chứng minh rằng B = 1 + 3 + 32 + ... + 399 chia hết cho 40
✿
Bài 1 :
a) \(a.b+b.19=713\) \(\left(a;b\inℕ^∗\right)\)
\(\Rightarrow b.\left(a+19\right)=713\)
\(\Rightarrow\left(a+19\right);b\in\left\{1;23;31;713\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-18;713\right);\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\left(a;b\inℕ^∗\right)\)
b) \(a.b-10.b=650\)
\(\Rightarrow b.\left(a-10\right)=650\)
\(\Rightarrow\left(a-10\right);b\in\left\{1;5;10;13;25;26;50;65;130;325;650\right\}\)
Bạn lập bảng sẽ tìm ra (a;b)...
Bài 2 :
a) \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=3^4.40\)
b) \(B=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow B=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)...+3^{96}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=40+3^4.40...+3^{96}.40\)
\(\Rightarrow B=40\left(1+3^4...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Tính
a ) 17 5 − 3 5 ; b ) − 3 4 − 4 5 ; c ) − 5 6 − − 5 9 d ) 6 12 − 7 − 21 ; e ) 3 2 − 1 ; f ) 2 − − 4 5 .
a ) 14 5 b ) − 31 20 c ) − 5 18
d ) 5 6 . e ) 1 2 . f ) 14 5