Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MinhDucを行う
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 13:57

Câu 8: C

MinhDucを行う
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 14:03

Chọn B

Minh Hồng
22 tháng 12 2021 lúc 14:03

B

Nguyễn Ngọc Yến Nhi
Xem chi tiết
๖ۣۜHả๖ۣۜI
9 tháng 12 2021 lúc 7:47

C

ng.nkat ank
9 tháng 12 2021 lúc 7:47

Tui nghĩ là 0 có số nào -)) 

Minh Hồng
9 tháng 12 2021 lúc 7:47

C

Thì thì Nguyên
Xem chi tiết
HT.Phong (9A5)
31 tháng 10 2023 lúc 18:59

Trong các số tự nhiên sau số nào là số nguyên tố:

A.11

B.35

C.27

D.8

Thương và số dư của phép chia 47:7 là:

A.thương là 6. Số dư là 9

B.thương là 7. Số dư là 3

C.thương là 6. Số dư là 4

D.thương là 6. Số dư là 5

Trong các phân số sau số nào là phân số tối giản

A.6/8 

B.10/5

C.3/8

D.15/40

Hà Trâm Anh
Xem chi tiết
❖︵нσàиɢ✔иσσвᴾᴿᴼシ
23 tháng 11 2018 lúc 15:06

1;B

2;D

nguyễn phạm đăng kiên
Xem chi tiết
❖ Khang/GD❄ 『ʈєɑɱ❖Hoàng...
24 tháng 12 2021 lúc 20:07

C

nguyễn phạm đăng kiên
24 tháng 12 2021 lúc 20:31

câu b đúng nha

 

Hồng Tố Chi
9 tháng 10 2022 lúc 17:04

cút

 

Nguyễn Minh
Xem chi tiết
Darlingg🥝
16 tháng 6 2019 lúc 16:45

Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.

(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.

 

Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.

Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:

Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì

a)     Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.

b)     Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ  modulo m.

Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác

            (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).

 

Ta có  

Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì

(ax1,a x2, …, axj(m))  cũng là một hệ thặng dư thu gọn modulo m.

 

Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.

 

Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.

~Hok tốt`

P/s:Ko chắc

zZz Cool Kid_new zZz
17 tháng 6 2019 lúc 10:23

\(a< b< c< d< e< f\)

\(\Rightarrow a+c+e< b+d+f\)

\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)

zZz Cool Kid_new zZz
17 tháng 6 2019 lúc 11:13

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{p}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{p}\)

\(\Leftrightarrow p\left(a+b\right)=ab\left(1\right)\)

Do p là số nguyên tố nên  một trong các số a,b phải chia hết cho p

Do a,b bình đẳng như nhau nên ta giả sử \(a⋮p\Rightarrow a=pk\) với \(k\inℕ^∗\)

Nếu \(p=1\) thay vào \(\left(1\right)\) ta được 

\(p\left(p+b\right)=p\)

\(\Rightarrow p+b=1\left(KTM\right)\)

\(\Rightarrow p\ge2\) thay vào  \(\left(1\right)\) ta được:

\(p\left(kp+b\right)=kpb\)

\(\Rightarrow kp+b=kb\)

\(\Rightarrow kp=kb-b\)

\(\Rightarrow kp=b\left(k-1\right)\)

\(\Rightarrow b=\frac{kp}{k-1}\)

Do \(b\inℕ^∗\) nên \(kp⋮k-1\)

Mà \(\left(k;k-1\right)=1\Rightarrow p⋮k-1\)

\(\Rightarrow k-1\in\left\{1;p\right\}\)

Với \(k-1=1\Rightarrow k=2\Rightarrow a=b=2p\)

Với \(k-1=p\Rightarrow k=p+1\Rightarrow\hept{\begin{cases}a=p\left(p+1\right)=p^2+p\\b=p+1\end{cases}}\)

Hoàng Minh duc
Xem chi tiết
Phạm Hải Phong
15 tháng 12 2023 lúc 16:46

dung cc

Phương Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 23:15

Bài 6: 

a: Là hợp số

b: Là hợp số

Ric - chan
10 tháng 11 2022 lúc 21:00

c1

p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp

Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.

3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)

Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.

Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.

c2

a) 5 . 6 . 7  + 8 . 9 

ta có :

5 . 6 . 7 chia hết cho 3

8 . 9 chia hết cho 3

=> 5 . 6 . 7 + 8 . 9 chia hết cho 3   và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số

b 5 . 7 . 9 . 11 - 2 . 3 . 7

ta có :

5 . 7 . 9 . 11 chia hết cho 7

2 . 3 . 7 chia hết cho 7

=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số

c3

 

minh quang ly han
Xem chi tiết
Phạm Hoàng Gia Bảo
16 tháng 2 2017 lúc 17:59

1 .a

2.c

3.a

4.d

5.c