Cho a+b+c+d=0
CMR \(a^3+b^3+c^3+d^3=3(b+c)(ad-bc)\)
cho a,b,c>0
CMR: a^3/b + b^3/c + c^3/a >= ab + bc + ca
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c
Cho a+b+c+d=0
CMR: a3+b3+c3+d3=3(c+d)(ab+cd)
Giúp mik nhá mọi người
Ta có : \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-c-d\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c-d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3-d^3+3cd.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3cd.\left(c+d\right)-3ab.\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.cd.\left(a+b\right)+3ab.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.\left(c+d\right)\left(cd+ab\right)\)
Ta có : a+b+c+d=0
⇔a+b=−c−d
⇔(a+b)3=(−c−d)3
⇔a3+b3+3ab.(a+b)=−c3−d3+3cd.(c+d)
⇔a3+b3+c3+d3=3cd.(c+d)−3ab.(a+b)
⇔a3+b3+c3+d3=3.cd.(a+b)+3ab.(c+d)
⇔a3+b3+c3+d3=3.(c+d)(cd+ab)
cho a+b+c+d=0. CMR:
a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
a+b+c+d=0
=> a + b = -(c+d)
=> (a+b)^3 = -(c+d)^3
=> a^3 + b^3 + 3ab (a+b) = -c^3- d^3 - 3cd (c+d)
=> a^3+b^3+c^3+d^3 = -3ab (a+b) - 3cd (c+d)
=> a^3 + b^3 + c^3 + d^3 = 3ab (c+d)- 3cd (c+d) [vì a+b = - (c+d)]
==> a^3 + b^^3 + c^3 + d^3 =3 (c+d) (ab-cd) (đpcm)
cho a+b+c+d=0 c/m a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
a+b+c+d=0
=>a+b = - (c+d)
=> (a+b)^3= - (c+d)^3
=> a^3 + b^3 + 3ab(a+b) = - c^3 - d^3 - 3cd(c+d)
=> a^3 + b^3 + c^3 + d^3 = - 3ab(a+b) - 3cd(c+d)
=> a^3 + b^3 + c^3 + d^3 = 3ab(c+d) - 3cd(c+d) ( Vì a+b = - (c+d))
==> a^3 + b^3 + c^3 + d^3 = 3(c+d)(ab-cd) (đpcm).
cho a+b+c+d= 0
CMR
a^3 + b^3 + c^3 + d^3 = 3(b+c)(ad-bc)
ta có a+b+c+d = 0=> b+c= -( a+d) => (b+c)^3 = - (a+d)^3
=> b^3+ c^3 + 3bc( b+c) = -( a^3 +d^3 + 3ad(a+d))
=> a^3+b^3+c^3+d^3 = - 3ad( a+d) - 3bc(b+c) = 3ad(b+c) - 3bc(b+c)
= 3(b+c)(ad-bc)
sao cậu tự đặt câu hỏi rồi lại tự trả lời luôn
thế là sao??????????
Cho a+b+c+d=0. Chứng minh rằng a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
Hiuhiu mọi ngừi giúp mik vứii aaaT.T
a+b+c+d=0
=>a+d=-(b+c)
=>(a+d)^3=-(b+c)^3
=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)
=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3+3bc\left(a+d\right)\)
=>\(a^3+d^3+b^3+c^3=3bc\left(a+d\right)-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(a+d\right)\left(bc-ad\right)\)
=>\(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Ta có: a+b+c+d=0
\(\Leftrightarrow b+c=-\left(a+d\right)\)
\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Cho a+b+c+d=0.CMR: \(a^3+b^3+c^3+d^3=3\left(b+c\right).\left(ad-bc\right)\)